A Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management
نویسندگان
چکیده
Triangular intuitionistic fuzzy number (TIFN) is a more generalized platform for expressing imprecise, incomplete, and inconsistent information when solving multi-criteria decision-making problems, as well as for expressing and reflecting the evaluation information in several dimensions. In this paper, the TIFN has been applied for solving multi-criteria decision-making (MCDM) problems, first, by defining some existing triangular intuitionistic fuzzy geometric aggregation operators, and then developing a new triangular intuitionistic fuzzy geometric aggregation operator, which is the generalized triangular intuitionistic fuzzy ordered weighted geometric averaging (GTIFOWGA) operator. Based on these operators, a new approach for solving multicriteria decision-making problems when the weight information is fixed is proposed. Finally, a numerical example is provided to show the applicability and rationality of the presented method, followed by a comparative analysis using similar existing computational approaches.
منابع مشابه
Generalized Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision Making in Engineering
Intuitionistic fuzzy set, which can be represented using the triangular intuitionistic fuzzy number (TIFN), is a more generalized platform for expressing imprecise, incomplete and inconsistent information when solving multi-criteria decision-making problems, as well as for reflecting the evaluation information exactly in different dimensions. In this paper, the TIFN has been applied for solving...
متن کاملA NOVEL TRIANGULAR INTERVAL TYPE-2 INTUITIONISTIC FUZZY SETS AND THEIR AGGREGATION OPERATORS
The objective of this work is to present a triangular interval type-2 (TIT2) intuitionistic fuzzy sets and their corresponding aggregation operators, namely, TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid averaging based on Frank norm operation laws. Furthermore, based on these operators, an approach to mul...
متن کاملGroup Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making
Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...
متن کاملTriangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کاملASSOCIATED PROBABILITY INTUITIONISTIC FUZZY WEIGHTED OPERATORS IN BUSINESS START-UP DECISION MAKING
In the study, we propose the Associated Probability Intuitionistic Fuzzy Weighted Averaging (As-P-IFWA) and the Associated Probability Intuitionistic Fuzzy Weighted Geometric (As-P-IFWG) aggregation operators with associated probabilities of a fuzzy measure presenting an uncertainty. Decision makers' evaluations are given as intuitionistic fuzzy values and are used as the arguments of the aggre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information
دوره 8 شماره
صفحات -
تاریخ انتشار 2017