Memory-based one-step named-entity recognition: Effects of seed list features, classifier stacking, and unannotated data
نویسندگان
چکیده
We present a memory-based named-entity recognition system that chunks and labels named entities in a oneshot task. Training and testing on CoNLL-2003 shared task data, we measure the effects of three extensions. First, we incorporate features that signal the presence of wordforms in external, language-specific seed (gazetteer) lists. Second, we build a second-stage stacked classifier that corrects first-stage output errors. Third, we add selected instances from classified unannotated data to the training material. The system that incorporates all attains an overall F-rate on the final test set of 78.20 on English and 63.02 on German.
منابع مشابه
Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملNamed Entity Recognition as a House of Cards: Classifier Stacking
This paper presents a classifier stacking-based approach to the named entity recognition task (NER henceforth). Transformation-based learning (Brill, 1995), Snow (sparse network of winnows (Muñoz et al., 1999)) and a forward-backward algorithm are stacked (the output of one classifier is passed as input to the next classifier), yielding considerable improvement in performance. In addition, in a...
متن کامل