Tumor necrosis factor-α downregulates sodium current in skeletal muscle by protein kinase C activation: involvement in critical illness polyneuromyopathy.

نویسندگان

  • Maité Guillouet
  • Gildas Gueret
  • Fabrice Rannou
  • Marie-Agnès Giroux-Metges
  • Maxime Gioux
  • Charles C Arvieux
  • Jean-Pierre Pennec
چکیده

Sepsis is involved in the decrease of membrane excitability of skeletal muscle, leading to polyneuromyopathy. This effect is mediated by alterations of the properties of voltage-gated sodium channels (Na(V)), but the exact mechanism is still unknown. The aim of the present study was to check whether tumor necrosis factor (TNF-α), a cytokine released during sepsis, exerts a rapid effect on Na(V). Sodium current (I(Na)) was recorded by macropatch clamp in skeletal muscle fibers isolated from rat peroneus longus muscle, in control conditions and after TNF-α addition. Analyses of dose-effect and time-effect relationships were carried out. Effect of chelerythrine, a PKC inhibitor, was also studied to determine the way of action of TNF-α. TNF-α induced a reversible dose- and time-dependent inhibition of I(Na). A maximum inhibition of 75% of the control current was observed. A shift toward more negative potentials of activation and inactivation curves of I(Na) was also noticed. These effects were prevented by chelerythrine pretreatment. TNF-α is a cytokine released in the early stages of sepsis. Besides a possible transcriptional role, i.e., modification of the channel type and/or number, we demonstrated the existence of a rapid, posttranscriptional inhibition of Na(V) by TNF-α. The downregulation of the sodium current could be mediated by a PKC-induced phosphorylation of the sodium channel, thus leading to a significant decrease in muscle excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective?

Background: This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldol...

متن کامل

Expression of Anaplastic Lymphoma Kinase Protein in Human Breast Cancer

Background & Objectives: Anaplastic lymphoma Kinase (ALK) is a receptor tyrosine kinase involved in the genesis of several human cancers. ALK was initially identified because of its involvement in anaplastic large cell lymphoma (ALCL). ALK is believed to foster tumorigenesis following activation by autocrine and/or paracrine growth loops. Studies reveal that the presence of anti-ALK antibodies ...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Activated Protein Synthesis and Suppressed Protein Breakdown Signaling in Skeletal Muscle of Critically Ill Patients

BACKGROUND Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 301 5  شماره 

صفحات  -

تاریخ انتشار 2011