Linker histones incorporation maintains chromatin fiber plasticity.
نویسندگان
چکیده
Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional constraints, nucleosomes can undergo a reversible chiral transition toward a state of positive topology. We demonstrate here that chromatin fibers comprising linker histones present a torsional plasticity similar to that of naked nucleosome arrays. Chromatosomes can undergo a reversible chiral transition toward a state of positive torsion (reverse chromatosome) without loss of linker histones.
منابع مشابه
Forced unraveling of chromatin fibers with nonuniform linker DNA lengths.
The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones, constitute an open challenge. Here we uti...
متن کاملA tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
To elucidate the role of the histone tails in chromatin compaction and in higher-order folding of chromatin under physiological conditions, we extend a mesoscale model of chromatin (Arya, Zhang, and Schlick. Biophys. J. 2006, 91, 133; Arya and Schlick. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16236) to account for divalent cations (Mg(2+)) and linker histones. Configurations of 24-nucleosome ol...
متن کاملFrom Macroscopic to Mesoscopic Models of Chromatin Folding
An overview of the evolution of computer models for simulation of chromatin folding is presented. Chromatin is the protein/nucleic acid fiber that stores the genetic material in higher organisms. Many biological questions concerning the fiber structure and its dependence on internal and external factors remain a puzzle. Modeling and simulation can in theory provide molecular view for analysis, ...
متن کاملEvidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
The architecture of the chromatin fiber, which determines DNA accessibility for transcription and other template-directed biological processes, remains unknown. Here we investigate the internal organization of the 30-nm chromatin fiber, combining Monte Carlo simulations of nucleosome chain folding with EM-assisted nucleosome interaction capture (EMANIC). We show that at physiological concentrat...
متن کاملAn All-Atom Model of the Chromatin Fiber Containing Linker Histones Reveals a Versatile Structure Tuned by the Nucleosomal Repeat Length
In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 100 11 شماره
صفحات -
تاریخ انتشار 2011