Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer's Disease

نویسندگان

  • Alain R. Simard
  • Denis Soulet
  • Genevieve Gowing
  • Jean-Pierre Julien
  • Serge Rivest
چکیده

Microglia are the immune cells of the brain. Here we show a massive infiltration of highly ramified and elongated microglia within the core of amyloid plaques in transgenic mouse models of Alzheimer's disease (AD). Many of these cells originate from the bone marrow, and the beta-amyloid-40 and -42 isoforms are able to trigger this chemoattraction. These newly recruited cells also exhibit a specific immune reaction to both exogenous and endogenous beta-amyloid in the brain. Creation of a new AD transgenic mouse that expresses the thymidine kinase protein under the control of the CD11b promoter allowed us to show that blood-derived microglia and not their resident counterparts have the ability to eliminate amyloid deposits by a cell-specific phagocytic mechanism. These bone marrow-derived microglia are thus very efficient in restricting amyloid deposits. Therapeutic strategies aiming to improve their recruitment could potentially lead to a new powerful tool for the elimination of toxic senile plaques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model.

We have recently shown that the ability of microglia to effectively fight off aggregated beta-amyloid plaque formation and cognitive loss in transgenic mouse models of Alzheimer's disease (Tg-AD), is augmented in response to T-cell-based immunization, using glatiramer acetate (GA). The immunization increases incidence of local CD11c+ dendritic-like cells. It is unclear, however, whether these d...

متن کامل

Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease.

Mononuclear phagocytes are important modulators of Alzheimer's disease (AD), but the specific functions of resident microglia, bone marrow-derived mononuclear cells, and perivascular macrophages have not been resolved. To elucidate the spatiotemporal roles of mononuclear phagocytes during disease, we targeted myeloid cell subsets from different compartments and examined disease pathogenesis in ...

متن کامل

Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures

The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits for...

متن کامل

Animal Models of Alzheimer’s Disease: Utilization of Transgenic Alzheimer’s Disease Models in Studies of Amyloid Beta Clearance

Glial cells in Alzheimer's disease (AD) have been shown to be capable of clearing or at least restricting the accumulation of toxic amyloid beta (Aβ) deposits. Recently, bone marrow (BM)-derived monocytic cells have been recognized in experimental studies to be superior in their phagocytic properties when compared to their brain endogenous counterparts. In human AD, BM-derived monocytic cells m...

متن کامل

P171: Microglia Cell, Major Player in the Central Nervous System Inflammation

Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including alzheimer's disease (AD), parkinson's disease (PD), and multiple sclerosis (MS). In the central nervous system, microglia, the resident innate immune cells play major role in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2006