Limit Computable Sets and Degrees

نویسنده

  • William Chan
چکیده

This paper will study sets and degrees containing sets that are determined as limits of computable approximations. By the Shoenfield Limit Lemma, the limit computable sets are precisely the degrees below ∅′. In particular, the paper will study limit computable sets by classifying them according to bounds to the number of changes to elements in various approximations of the sets. This leads to the n-c.e., ω-c.e., and ∆2 classifications. The paper will show these characterizations of sets and degrees are proper at various levels. Properties of n-c.e. sets particularly concerning the non-existence of n-c.e. minimal degrees will be developed in this paper. These classifications will also provide some insights into the structures of the Truth-Table Turing Degrees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing Degrees of Limit Sets of Cellular Automata

Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of T...

متن کامل

Turing Degrees of Limit Sets of Cellular

Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of T...

متن کامل

The Enumeration Spectrum Hierarchy of α-families and Lowα Degrees

In this paper we introduce a hierarchy of families which can be derived from the integers using countable collections. This hierarchy coincides with the von Neumann hierarchy of hereditary countable sets in the ZFC-theory with urelements from N. The families from the hierarchy can be coded into countable algebraic structures preserving their algorithmic properties. We prove that there is no max...

متن کامل

The computable Lipschitz degrees of computably enumerable sets are not dense

The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truthtable reducibility [6]. This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solo...

متن کامل

Limitwise monotonic functions, sets, and degrees on computable domains

We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing (support strictly increasing) limitwise monotonic on various

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010