Classification and Clustering of Brain Seizure Activity Using Wavelet Trans-form and Radial Basis Neural Network

نویسنده

  • Shweta Kumari
چکیده

Electroencephalogram (EEG) is the record of the brain electrical activity and it contains valuable information related to the different physiological and pathological states of the brain. Epilepsy is known to be the most prevalent neurological disorder in humans and seizure discharge is the main characteristics of the epilepsy. EEG is an important clinical tool for the diagnosis and monitoring of seizures. Epileptic seizure occurs irregularly and unpredictably manner due to temporary electrical disturbance of the brain. The aim of this project is Epileptic seizure detection in multichannel EEG. This paper presents a novel method for automatic epileptic seizure detection, useing recurrent rates derived from discrete wavelet transform in combination with a radial basis function neural network for classification and clustering of the pattern feature of EEG signals. The output of the neural network aids in finding existence or absence of seizures in the EEG data. We have used discrete wavelet transform (DWT) of Daubechie’s wavelet order 4 to decompose the EEG signal at different levels in extracting approximation and detail coefficients. We have evaluated a unique dynamical parameter (recurrence rate) from the wavelet co-coefficients of EEG of different subjects (normal and epileptic). The recurrence rate has been used in a radial basis function neural network for seizure detection. The performance of the network has been evaluated in terms of the accuracy, specificity and sensitivity detecting in unknown EEG time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Image Classification and Clustering using Wavelet Based Radial Basis Neural Network

Accurate image segmentation and classification, is essential for medical diagnosis of scans. Of late, magnetic resonance (MR) images have become the commonest tool of clinical investigation. In this study we address to clarify brain tumor images into normal, non cancerous (benign) brain tumor and cancerous (malignant) brain tumor by collecting the complete history of the patients in terms of th...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network

Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012