Evidence for a multivalent interaction of symmetrical, N-linked, lidocaine dimers with voltage-gated Na+ channels.
نویسندگان
چکیده
The interaction of symmetrical lidocaine dimers with voltage-gated Na+ channels (VGSCs) was examined using a FLIPR membrane potential assay and voltage-clamp. The dimers, in which the tertiary amines of the lidocaine moieties are linked by an alkylene chain (two to six methylene units), inhibited VGSC activator-evoked depolarization of cells heterologously-expressing rat (r) Na(v)1.2a, human (h) Na(v)1.5, and rNa(v)1.8, with potencies 10- to 100-fold higher than lidocaine (compound 1). The rank order of potency (C4 (compound 4) > C3 (compound 3) > or = C2 (compound 2) = C5 (compound 5) = C6 (compound 6) >> compound 1) was similar at each VGSC. Compound 4 exhibited strong use-dependent inhibition of hNa(v)1.5 with pIC50 values < 4.5 and 6.0 for tonic and phasic block, respectively. Coincubation with local anesthetics but not tetrodotoxin attenuated compound 4-mediated inhibition of hNa(v)1.5. These data suggest that the compound 4 binding site(s) is identical, or allosterically coupled, to the local anesthetic receptor. The dissociation rate of the dimers from hNa(v)1.5 was dependent upon the linker length, with a rank order of compound 1 > compound 5 = compound 6 > compound 2 >> compound 3. The observation that both the potency and dissociation rate of the dimers was dependent upon linker length is consistent with a multivalent interaction at VGSCs. hNa(v)1.5 VGSCs did not recover from inhibition by compound 4. However, "chase" with free local anesthetic site inhibitors increased the rate of dissociation of compound 4. Together, these data support the hypothesis that compound 4 simultaneously occupies two binding sites on VGSCs, both of which can be bound by known local anesthetic site inhibitors.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملDifferential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine.
Voltage-gated sodium channels play a critical role in excitability of nociceptors (pain-sensing neurons). Several different sodium channels are thought to be potential targets for pain therapeutics, including Na(v)1.7, which is highly expressed in nociceptors and plays crucial roles in human pain and hereditary painful neuropathies, Na(v)1.3, which is up-regulated in sensory neurons following c...
متن کاملLithium increases potency of lidocaine-induced block of voltage-gated Na+ currents in rat sensory neurons in vitro.
We and others have obtained data both in vivo and in isolated nerve preparations suggesting that Li+ increases the potency of local anesthetics in the block of conduction. In the present study we have tested the hypothesis that Li+ increases the potency of local anesthetic-induced block of conduction via a shift in the potency of local anesthetic-induced block of voltage-gated Na+ channels. To ...
متن کاملSidedness of carbamazepine accessibility to voltage-gated sodium channels.
Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with ext...
متن کاملThe Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na+ Channels
Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2006