Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model.

نویسندگان

  • Supratim Sengupta
  • Julien Derr
  • Anirban Sain
  • Andrew D Rutenberg
چکیده

We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division.

The Min system in Escherichia coli directs division to the centre of the cell through pole-to-pole oscillations of the MinCDE proteins. We present a one-dimensional stochastic model of these oscillations which incorporates membrane polymerization of MinD into linear chains. This model reproduces much of the observed phenomenology of the Min system, including pole-to-pole oscillations of the Min...

متن کامل

Oscillations of Min-proteins in micropatterned environments: a three-dimensional particle-based stochastic simulation approach.

The Min-proteins from E. coli and other bacteria are the best characterized pattern forming system in cells and their spatiotemporal oscillations have been successfully reconstituted in vitro. Different mathematical and computational models have been used to better understand these oscillations. Here we use particle-based stochastic simulations to study Min-oscillations in patterned environment...

متن کامل

Dynamic compartmentalization of bacteria: accurate division in E. coli.

Positioning of the midcell division plane within the bacterium E. coli is controlled by the min system of proteins: MinC, MinD, and MinE. These proteins coherently oscillate from end to end of the bacterium. We present a reaction-diffusion model describing the diffusion of min proteins along the bacterium and their transfer between the cytoplasmic membrane and cytoplasm. Our model spontaneously...

متن کامل

Min-protein oscillations in round bacteria.

In rod-shaped Escherichia coli cells, the Min proteins, which are involved in division-site selection, oscillate from pole-to-pole. The homologs of the Min proteins from the round bacterium Neisseria gonorrhoeae also form a spatial oscillator when expressed in wild-type and round, rodA- mutants of E. coli, suggesting that the Min proteins form an oscillator in N. gonorrhoeae. Here we report tha...

متن کامل

Division accuracy in a stochastic model of Min oscillations in Escherichia coli.

Accurate cell division in Escherichia coli requires the Min proteins MinC, MinD, and MinE as well as the presence of nucleoids. MinD and MinE exhibit spatial oscillations, moving from pole to pole of the bacterium, resulting in an average MinD concentration that is low at the center of the cell and high at the poles. This concentration minimum is thought to signal the site of cell division. Det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical biology

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2012