Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter: requirement for the extracellular methionine-rich clusters.
نویسندگان
چکیده
Cisplatin is a highly effective cancer chemotherapy agent. However, acquired resistance currently limits the clinical utility of this drug. The human high affinity copper importer, hCtr1, and its yeast and murine orthologues have been shown to mediate the uptake of cisplatin. This transporter is located at the plasma membrane under low copper conditions, and excess copper concentrations stimulate its endocytosis and degradation. In this study we further examined the link between cisplatin and hCtr1 by examining whether cisplatin can also stimulate the endocytosis and degradation of hCtr1. The steady-state location of hCtr1 and its endocytosis from the plasma membrane were not altered by cisplatin treatment. Unexpectedly, cisplatin treatment of a cell line expressing hCtr1 revealed the time- and concentration-dependent appearance of a stable hCtr1 multimeric complex, consistent with a homotrimer, which was not observed following copper treatment of these same cells. Mutagenesis studies identified two methionine-rich clusters in the extracellular amino-terminal region of hCtr1 that were required for stabilization of the hCtr1 multimer by cisplatin, suggesting that these sequences bind cisplatin and form crosslinks between hCtr1 polypeptides. Treatment with the metal chelator dimethyldithiocarbamate disassembled the hCtr1 multimer following cisplatin exposure, suggesting that platinum was an integral component of this complex. These studies provide the first evidence for a direct interaction between cisplatin and the hCtr1 protein and establish that cisplatin and copper have distinct biochemical consequences on this transporter.
منابع مشابه
Distinct mechanisms for Ctr1-mediated copper and cisplatin transport.
The Ctr1 family of integral membrane proteins is necessary for high affinity copper uptake in eukaryotes. Ctr1 is also involved in cellular accumulation of cisplatin, a platinum-based anticancer drug. Although the physiological role of Ctr1 has been revealed, the mechanism of action of Ctr1 remains to be elucidated. To gain a better understanding of Ctr1-mediated copper and cisplatin transport,...
متن کاملCoordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1w
Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into ce...
متن کاملCoordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1.
Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into ce...
متن کاملCtr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain.
Copper is an essential catalytic cofactor for enzymatic activities that drive a range of metabolic biochemistry including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Copper dysregulation is associated with fatal infantile disease, liver, and cardiac dysfunction, neuropathy, and anemia. Here we report that mammals regulate systemic copper acquisition and ...
متن کاملThe role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs.
The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 45 شماره
صفحات -
تاریخ انتشار 2004