The influence of cyclovergence on unconstrained stereoscopic matching
نویسندگان
چکیده
In order to perceive depth from binocular disparities the visual system has to identify matching features of the two retinal images. Normally, the assigned disparity is unambiguously determined by monocularly visible matching constraints. The assigned disparity is ambiguous when matching is unconstrained, such as when we view an isolated long oblique disparate line. Recently we found that in order to perceive a depth probe at the same depth as the oblique line, the probe needs to have the same horizontal disparity as the line (i.e. matching occurs along horizontal "search-zones" [Vis. Res. 40 (2000) 151]). Here we examined whether the depth probe disparity in unconstrained matching of long lines is influenced by cyclovergence, by cyclorotation between stereogram half-images, or by combinations of the two. We measured retinal rotation (>6 deg in cyclovergence conditions). We found that in those conditions in which the retinal images were the same (a condition with, say, both zero cyclovergence and zero cyclorotation between the half-images, creates the same retinal images as a condition with both 6 deg cyclovergence and 6 deg cyclorotation) assigned depth was the same too, i.e. independent of cyclovergence. Thus, the assigned depth of the test-line seems to be determined solely by the retinal test-line orientation, implying that the binocular matching algorithm does not seem to incorporate the eyes' cyclovergence when matching is unconstrained.
منابع مشابه
Visually evoked cyclovergence and extended listing's law.
Cyclovergence is a simultaneously occurring cyclorotation of the two eyes in opposite directions. Cyclovergence can be elicited visually by opposite cyclorotation of the two eyes' images. It also can occur in conjunction with horizontal vergence and vertical version in a stereotyped manner as described by the extended Listing's law (or L2). We manipulated L2-related and visually evoked cyclover...
متن کاملUnconstrained stereoscopic matching of lines
The computation of horizontal binocular disparities used in stereoscopic depth perception depends upon the identification of corresponding features in the two retinal images. In principle, binocular matching is a two-dimensional problem that considers matches in all possible meridians. Normally, constraints such as end points or crossing points limit the direction and magnitude of matches. If m...
متن کاملEffect of sustained cyclovergence on eye alignment: rapid torsional phoria adaptation.
PURPOSE To describe adaptive changes in torsional alignment that follow sustained cyclovergence in healthy humans. METHODS Eye movements were recorded binocularly from four healthy subjects using dual-coil scleral annuli. Cyclovergence movements were evoked over periods of 30 to 150 seconds using a stereoscopic display, presenting gratings of lines arranged horizontally, vertically, or at 45 ...
متن کاملPerceiving slant about a horizontal axis from stereopsis.
Rotating a surface about a horizontal axis alters the retinal horizontal-shear disparities. Opposed torsional eye movements (cyclovergence) also change horizontal shear. If there were no compensation for the horizontal disparities created by cyclovergence, slant estimates would be erroneous. We asked whether compensation for cyclovergence occurs, and, if it does, whether it occurs by use of an ...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 43 شماره
صفحات -
تاریخ انتشار 2003