Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors.
نویسندگان
چکیده
Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.
منابع مشابه
Force of an actin spring.
Cellular movements are produced by forces. Typically, cytoskeletal proteins such as microtubules and actin filaments generate forces via polymerization or in conjunction with molecular motors. However, the fertilization of a Limulus polyphemus egg involves a third type of actin-based cellular engine--a biological spring. During the acrosome reaction, a 60-microm long coiled and twisted bundle o...
متن کاملForce generation in small ensembles of Brownian motors.
The motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces that can exceed 150 pN. The molecular details of the motor mechanism are still largely unknown, while other features have been identified, such as the ring-...
متن کاملDirect measurement of force generation by actin filament polymerization using an optical trap.
Actin filament polymerization generates force for protrusion of the leading edge in motile cells. In protrusive structures, multiple actin filaments are arranged in cross-linked webs (as in lamellipodia or pseudopodia) or parallel bundles (as in filopodia). We have used an optical trap to directly measure the forces generated by elongation of a few parallel-growing actin filaments brought into ...
متن کاملCollective force generated by multiple biofilaments can exceed the sum of forces due to individual ones
Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that is currently unknown. Obtaining force-velocity relations for different models that capture ch...
متن کاملMolecular motors
The " Molecular Motors " Minisymposium focused mainly on the microtubule-based motors kinesin and dynein and a class V myosin. A common feature of all these motors is that they move processively on their track, meaning that the motor can take multiple steps without dissociating. A common theme of the Minisymposium was motor function in a complex intracellular environment. Kathy Trybus (Universi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 95 2-1 شماره
صفحات -
تاریخ انتشار 2017