Siegel Modular Forms and Representations
نویسندگان
چکیده
This paper explicitly describes the procedure of associating an automorphic representation of PGSp(2n, A) with a Siegel modular form of degree n for the full modular group Γn = Sp(2n, Z), generalizing the well-known procedure for n = 1. This will show that the so-called “standard” and “spin” L-functions associated with such forms are obtained as Langlands L-functions. The theory of Euler products, developed by Langlands, applied to a Levi subgroup of the exceptional group of type F4, is then used to establish meromorphic continuation for the spin L-function when n = 3. Introduction Let f be a Siegel modular form of degree n for the full modular group Γn = Sp(2n,Z). If f is an eigenfunction for the action of the Hecke algebra, then there are two L-functions associated with f . Let a0, a1, . . . , an be the Satake parameters of f , and define the standard L-function L1(s, f) = ∏
منابع مشابه
Galois Representations for Holomorphic Siegel Modular Forms
We prove local global compatibility (up to a quadratic twist) of Galois representations associated to holomorphic Hilbert-Siegel modular forms in many cases (induced from Borel or Klingen parabolic). For Siegel modular forms, when the local representation is an irreducible principal series we get local global compatibility without a twist. We achieve this by proving a version of rigidity (stron...
متن کاملOn Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملLevel Stripping for Siegel Modular Forms with Reducible Galois Representations
In this paper we consider level stripping for genus 2 cuspidal Siegel eigenforms. In particular, we show that it is possible to strip primes from the level of Saito-Kurokawa lifts that arise as theta lifts and weak endoscopic lifts with a mild condition on the associated character. The main ingredients into our results are a level stripping result for elliptic modular forms and the explicit nat...
متن کاملOn the images of the Galois representations attached to genus 2 Siegel modular forms
We address the problem of the determination of the images of the Galois representations attached to genus 2 Siegel cusp forms of level 1 having multiplicity one. These representations are symplectic. We prove that the images are as large as possible for almost every prime, if the Siegel cusp form is not a Maass spezialform and verifies two easy to check conditions. Mathematics Subject Classific...
متن کاملCrystalline Representations for GL(2) over Quadratic Imaginary Fields
Let K be a quadratic imaginary field and π an irreducible regular algebraic cuspidal automorphic representation of GL(2,AK). Under the assumption that the central character χπ is isomorphic to its complex conjugate, Taylor et al. associated p-adic Galois representations ρπ,p : GK → GL(2,Qp) which are unramified except at finitely many places, and such that the truncated L-function of the Galois...
متن کاملSiegel Modular Forms and Finite Symplectic Groups
The finite symplectic group Sp(2g) over the field of two elements has a natural representation on the vector space of Siegel modular forms of given weight for the principal congruence subgroup of level two. In this paper we decompose this representation, for various (small) values of the genus and the level, into irreducible representations. As a consequence we obtain uniqueness results for cer...
متن کامل