Indestructible Strong Unfoldability

نویسندگان

  • Joel David Hamkins
  • Thomas A. Johnstone
چکیده

Using the lottery preparation, we prove that any strongly unfoldable cardinal κ can be made indestructible by all <κ-closed κ+-preserving forcing. This degree of indestructibility, we prove, is the best possible from this hypothesis within the class of <κ-closed forcing. From a stronger hypothesis, however, we prove that the strong unfoldability of κ can be made indestructible by all <κ-closed forcing. Such indestructibility, we prove, does not follow from indestructibility merely by <κ-directed closed forcing. Finally, we obtain global and universal forms of indestructibility for strong unfoldability, finding the exact consistency strength of universal indestructibility for strong unfoldability. The unfoldable cardinals were introduced by Villaveces in [Vil98], along with their companion notion, the strongly unfoldable cardinals, which turn out to be the same as what Miyamoto [Miy98] independently introduced as the Hκ+ reflecting cardinals. These cardinals lie relatively low in the large cardinal hierarchy, somewhat above the weakly compact cardinals, and they relativize to L in the sense that every unfoldable cardinal is unfoldable in L and in fact strongly unfoldable there, as in L the two notions coincide. For this reason, the notions of unfoldability and strong unfoldability, although not equivalent, have the same consistency strength, bounded below by the totally indescribable cardinals and above by the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unfoldable Cardinals and The GCH

Unfoldable cardinals are preserved by fast function forcing and the Laver-like preparations that fast functions support. These iterations show, by set-forcing over any model of ZFC, that any given unfoldable cardinal κ can be made indestructible by the forcing to add any number of Cohen subsets to κ. 1 Unfoldable Cardinals In introducing unfoldable cardinals last year, Andres Villaveces [Vil98]...

متن کامل

Indestructibility and stationary reflection

If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ-strategically closed forcing and λ is weakly compact, then we show that A = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets} must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to cons...

متن کامل

Indestructibility, instances of strong compactness, and level by level inequivalence

Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ+ strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which A = ∅. The first of these cont...

متن کامل

Indestructible Strong Compactness and Level by Level Equivalence with No Large Cardinal Restrictions

We construct a model for the level by level equivalence between strong compactness and supercompactness with an arbitrary large cardinal structure in which the least supercompact cardinal κ has its strong compactness indestructible under κ-directed closed forcing. This is in analogy to and generalizes [3, Theorem 1], but without the restriction that no cardinal is supercompact up to an inaccess...

متن کامل

Indestructible strong compactness but not supercompactness

Starting from a supercompact cardinal κ, we force and construct a model in which κ is both the least strongly compact and least supercompact cardinal and κ’s strong compactness, but not its supercompactness, is indestructible under arbitrary κ-directed closed forcing.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2010