Prime algebraicity
نویسنده
چکیده
A prime algebraic lattice can be characterised as isomorphic to the downwards-closed subsets, ordered by inclusion, of its complete primes. It is easily seen that the downwards-closed subsets of a partial order form a completely distributive algebraic lattice when ordered by inclusion. The converse also holds; any completely distributive algebraic lattice is isomorphic to such a set of downwards-closed subsets of a partial order. The partial order can be recovered from the lattice as the order of the lattice restricted to its complete primes. Consequently prime algebraic lattices are precisely the completely distributive algebraic lattices. The result extends to Scott domains. Several consequences are explored briefly: the representation of Berry’s dIdomains by event structures; a simplified form of information systems for completely distributive Scott domains; and a simple domain theory for concurrency.
منابع مشابه
On Cr Mappings between Algebraic Cauchy–riemann Manifolds and Separate Algebraicity for Holomorphic Functions
We prove the algebraicity of smooth CR-mappings between algebraic Cauchy–Riemann manifolds. A generalization of separate algebraicity principle is established.
متن کاملAlgebraicity of Some Weil Hodge Classes
We show that the Prym map for 4-th cyclic étale covers of curves of genus 4 is a dominant morphism to a Shimura variety for a family of Abelian 6-folds of Weil type. According to the result of Schoen, this implies algebraicity of Weil classes for this family.
متن کاملAlgebraicity of Harmonic Maass Forms
In 1947 D. H. Lehmer conjectured that Ramanujan’s tau-function never vanishes. In the 1980s, B. Gross and D. Zagier proved a deep formula expressing the central derivative of suitable Hasse-Weil L-functions in terms of the Neron-Tate height of a Heegner point. This expository article describes recent work (with J. H. Bruinier and R. Rhoades) which reformulates both topics in terms of the algebr...
متن کاملOn the Extensions of the Darboux Theory of Integrability
Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields have been done. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the alg...
متن کاملA characterization property on fields equivalent to algebraicity on Banach spaces
In 1980, Christol, Kamae, Mendès France and Rauzy stated in [3] an important theorem in automata theory. This theorem links sequences recognized by automata and algebraic formal power series. In 1994, Bruyère, Hansel, Michaux and Villemaire extended this theorem with a logical link in [2]. With theses two articles, we can translate the property for a formal power series to be algebraic in combi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 410 شماره
صفحات -
تاریخ انتشار 2009