Prime algebraicity

نویسنده

  • Glynn Winskel
چکیده

A prime algebraic lattice can be characterised as isomorphic to the downwards-closed subsets, ordered by inclusion, of its complete primes. It is easily seen that the downwards-closed subsets of a partial order form a completely distributive algebraic lattice when ordered by inclusion. The converse also holds; any completely distributive algebraic lattice is isomorphic to such a set of downwards-closed subsets of a partial order. The partial order can be recovered from the lattice as the order of the lattice restricted to its complete primes. Consequently prime algebraic lattices are precisely the completely distributive algebraic lattices. The result extends to Scott domains. Several consequences are explored briefly: the representation of Berry’s dIdomains by event structures; a simplified form of information systems for completely distributive Scott domains; and a simple domain theory for concurrency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cr Mappings between Algebraic Cauchy–riemann Manifolds and Separate Algebraicity for Holomorphic Functions

We prove the algebraicity of smooth CR-mappings between algebraic Cauchy–Riemann manifolds. A generalization of separate algebraicity principle is established.

متن کامل

Algebraicity of Some Weil Hodge Classes

We show that the Prym map for 4-th cyclic étale covers of curves of genus 4 is a dominant morphism to a Shimura variety for a family of Abelian 6-folds of Weil type. According to the result of Schoen, this implies algebraicity of Weil classes for this family.

متن کامل

Algebraicity of Harmonic Maass Forms

In 1947 D. H. Lehmer conjectured that Ramanujan’s tau-function never vanishes. In the 1980s, B. Gross and D. Zagier proved a deep formula expressing the central derivative of suitable Hasse-Weil L-functions in terms of the Neron-Tate height of a Heegner point. This expository article describes recent work (with J. H. Bruinier and R. Rhoades) which reformulates both topics in terms of the algebr...

متن کامل

On the Extensions of the Darboux Theory of Integrability

Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields have been done. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the alg...

متن کامل

A characterization property on fields equivalent to algebraicity on Banach spaces

In 1980, Christol, Kamae, Mendès France and Rauzy stated in [3] an important theorem in automata theory. This theorem links sequences recognized by automata and algebraic formal power series. In 1994, Bruyère, Hansel, Michaux and Villemaire extended this theorem with a logical link in [2]. With theses two articles, we can translate the property for a formal power series to be algebraic in combi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2009