Approximate preservation of quadratic invariants by explicit Runge–Kutta methods

نویسنده

  • M. Calvo
چکیده

The construction of new explicit Runge–Kutta methods taking into account, not only their accuracy, but also the preservation of Quadratic Invariants (QIs) is studied. An expression of the error of conservation of a QI by a Runge–Kutta method is given, and a new six–stage formula with classical order four and seventh order of QI–conservation is obtained by choosing their coefficients so that they minimize both local and conservation errors. This formula, as well as other ones derived by Aubry and Chartier [1] and some standard formulas, have been tested with several problems with quadratic and general invariants. It is shown that the new fourth–order explicit method preserves much better the qualitative properties of the flow than standard fourth– order methods at the price of two extra function evaluations per step. Furthermore, it is a practical and efficient alternative to the standard implicit methods required for a complete preservation of QIs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs

In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, the relation implies that multi-sympletic RungeKutta methods applied to equations wi...

متن کامل

Reversible Long-Term Integration with Variable Stepsizes

The numerical integration of reversible dynamical systems is considered. A backward analysis for variable stepsize one-step methods is developed, and it is shown that the numerical solution of a symmetric one-step method, implemented with a reversible stepsize strategy, is formally equal to the exact solution of a perturbed differential equation, which again is reversible. This explains geometr...

متن کامل

Structure-preserving Exponential Runge-Kutta Methods

Exponential Runge-Kutta (ERK) and partitioned exponential Runge-Kutta (PERK) 4 methods are developed for solving initial value problems with vector fields that can be split into con5 servative and linear non-conservative parts. The focus is on linearly damped ordinary differential 6 equations, that possess certain invariants when the damping coefficient is zero, but, in the presence of 7 consta...

متن کامل

Structure Preservation for Constrained Dynamics with Super Partitioned Additive Runge-Kutta Methods

A broad class of partitioned differential equations with possible algebraic constraints is considered, including Hamiltonian and mechanical systems with holonomic constraints. For mechanical systems a formulation eliminating the Coriolis forces and closely related to the Euler– Lagrange equations is presented. A new class of integrators is defined: the super partitioned additive Runge–Kutta (SP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006