Finding Oxygen Reservoir by Using Extremely Small Test Cell Structure for Resistive Random Access Memory with Replaceable Bottom Electrode
نویسندگان
چکیده
Although the presence of an oxygen reservoir (OR) is assumed in many models that explain resistive switching of resistive random access memory (ReRAM) with electrode/metal oxide (MO)/electrode structures, the location of OR is not clear. We have previously reported a method, which involved the use of an AFM cantilever, for preparing an extremely small ReRAM cell that has a removable bottom electrode (BE). In this study, we used this cell structure to specify the location of OR. Because an anode is often assumed to work as OR, we investigated the effect of changing anodes without changing the MO layer and the cathode on the occurrence of reset. It was found that the reset occurred independently of the catalytic ability and Gibbs free energy (ΔG) of the anode. Our proposed structure enabled to determine that the reset was caused by repairing oxygen vacancies of which a filament consists due to the migration of oxygen ions from the surrounding area when high ΔG anode metal is used, whereas by oxidizing the anode due to the migration of oxygen ions from the MO layer when low ΔG anode metal is used, suggesting the location of OR depends on ΔG of the anode.
منابع مشابه
Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition
The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit ...
متن کاملSwitching Behaviors of HfO2/NiSix Based RRAM
This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si ...
متن کاملSelf-compliance-improved resistive switching using Ir/TaOx/W cross-point memory
Resistive switching properties of a self-compliance resistive random access memory device in cross-point architecture with a simple stack structure of Ir/TaOx/W have been investigated. A transmission electron microscope and atomic force microscope were used to observe the film properties and morphology of the stack. The device has shown excellent switching cycle uniformity with a small operatio...
متن کاملLow-energy Resistive Random Access Memory Devices with No Need for a Compliance Current
A novel resistive random access memory device is designed with SrTiO3/ La2/3Sr1/3MnO3 (LSMO)/MgAl2O4 (MAO)/Cu structure, in which metallic epitaxial LSMO is employed as the bottom electrode rather than traditional metal materials. In this device, the critical external compliance current is no longer necessary due to the high self-resistance of LSMO. The LMSO bottom electrode can act as a series...
متن کاملBipolar resistive switching of chromium oxide for resistive random access memory
This study investigates the resistance switching characteristics of Cr2O3-based resistance random access memory (RRAM) with Pt/Cr2O3/TiN and Pt/Cr2O3/Pt structures. Only devices with Pt/Cr2O3/TiN structure exhibit bipolar switching behavior after the forming process because TiN was able to work as an effective oxygen reservoir but Pt was not. Oxygen migration between Cr2O3 and TiN was observed ...
متن کامل