An efficient algorithm for second-order cone linear complementarity problems

نویسندگان

  • Lei-Hong Zhang
  • Wei Hong Yang
چکیده

Recently, the globally uniquely solvable (GUS) property of the linear transformation M ∈ Rn×n in the second-order cone linear complementarity problem (SOCLCP) receives much attention and has been studied substantially. Yang and Yuan [30] contributed a new characterization of the GUS property of the linear transformation, which is formulated by basic linear-algebra-related properties. In this paper, we consider efficient numerical algorithms to solve the SOCLCP where the linear transformation M has the GUS property. By closely relying upon the new characterization of the GUS property, a globally convergent bisection method is developed in which each iteration can be implemented using only 2n2 flops. Moreover, we also propose an efficient Newton method to accelerate the bisection algorithm. An attractive feature of this Newton method is that each iteration only requires 5n2 flops and converges quadratically. These two approaches make good use of the special structure contained in the SOCLCP and can be effectively combined to yield a fast and efficient bisection-Newton method. Numerical testing is carried out and very encouraging computational experiments are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

A Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs

An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...

متن کامل

An Efficient Matrix Splitting Method for the Second-Order Cone Complementarity Problem

Given a symmetric and positive (semi)definite n-by-n matrix M and a vector, in this paper, we consider the matrix splitting method for solving the second-order cone linear complementarity problem (SOCLCP). The matrix splitting method is among the most widely used approaches for large scale and sparse classical linear complementarity problems (LCP), and its linear convergence is proved by [Luo a...

متن کامل

A matrix-splitting method for symmetric affine second-order cone complementarity problems

The affine second-order cone complementarity problem (SOCCP) is a wide class of problems that contains the linear complementarity problem (LCP) as a special case. The purpose of this paper is to propose an iterative method for the symmetric affine SOCCP that is based on the idea ofmatrix splitting.Matrix-splittingmethods have originally been developed for the solution of the system of linear eq...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014