The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination.
نویسندگان
چکیده
In mammalian cells, all subunits of the DNA-dependent protein kinase (DNA-PK) have been implicated in the repair of DNA double-strand breaks and in V(D)J recombination. In the yeast Saccharomyces cerevisiae, we have examined the phenotype conferred by a deletion of HDF1, the putative homologue of the 70-kD subunit of the DNA-end binding Ku complex of DNA-PK. The yeast gene does not play a role in radiation-induced cell cycle checkpoint arrest in G1 and G2 or in hydroxyurea-induced checkpoint arrest in S. In cells competent for homologous recombination, we could not detect any sensitivity to ionizing radiation or to methyl methanesulfonate (MMS) conferred by a hdf1 deletion and indeed, the repair of DNA double-strand breaks was not impaired. However, if homologous recombination was disabled (rad52 mutant background), inactivation of HDF1 results in additional sensitization toward ionizing radiation and MMS. These results give further support to the notion that, in contrast to higher eukaryotic cells, homologous recombination is the favored pathway of double-strand break repair in yeast whereas other competing mechanisms such as the suggested pathway of DNA-PK-dependent direct break rejoining are only of minor importance.
منابع مشابه
Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملThe DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae.
In mammalian cells, the Ku autoantigen is an end- binding DNA protein required for the repair of DNA breaks [Troelstra, C. and Jaspers, N.G.J. (1994) Curr. Biol., 4, 1149- 1151]. A yeast gene (HDF1) encoding a putative homologue of the 70 kDa subunit of Ku has recently been identified [Feldmann, H. and Winnacker, E. L. (1993) J. Biol. Chem., 268, 12895- 12900]. We find that hdf1 mutant strains ...
متن کاملInvolvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage.
In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes....
متن کاملSaccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks.
Single-stranded DNA constitutes an important early intermediate for homologous recombination and damage-induced cell cycle checkpoint activation. In Saccharomyces cerevisiae, efficient double-strand break (DSB) end resection requires several enzymes; Mre11/Rad50/Xrs2 (MRX) and Sae2 are implicated in the onset of 5'-strand resection, whereas Sgs1/Top3/Rmi1 with Dna2 and Exo1 are involved in exte...
متن کاملMutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae.
DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 142 1 شماره
صفحات -
تاریخ انتشار 1996