Nipkow confocal imaging from deep brain tissues.

نویسندگان

  • Yuji Takahara
  • Norio Matsuki
  • Yuji Ikegaya
چکیده

One of the problems in imaging from brain tissues is light-scattering. Thus, multiphoton laser scanning microscopy is widely used to optically access fluorescent signals located deeply in tissues. Here we report that Nipkow-type spinning-disk one-photon confocal microscopy, which embodies high temporal resolution and slow photobleaching, is also capable of imaging tissues to a depth of up to 150 μm. Using a Nipkow-disk microscope, we conducted functional multi-cell calcium imaging of CA3 neurons from in toto intact hippocampal preparations and astrocytes from in vivo neocortical layer 1. This novel application of Nipkow-disk microscopy expands the potential usefulness of this type of microscopy and will contribute to our understanding of natural neuronal microcircuitry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed multineuron calcium imaging using Nipkow-type confocal microscopy.

Conventional confocal and two-photon microscopy scan the field of view sequentially with single-point laser illumination. This raster-scanning method constrains video speeds to tens of frames per second, which are too slow to capture the temporal patterns of fast electrical events initiated by neurons. Nipkow-type spinning-disk confocal microscopy resolves this problem by the use of multiple la...

متن کامل

Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media.

We characterize and compare the axial and lateral performance of fluorescence confocal systems imaging in turbid media. The aperture configurations studied are a single pinhole, a slit, a Nipkow disk, and a linear array of pinholes. Systems with parallelized apertures are used clinically because they enable high-speed and real-time imaging. Understanding how they perform in highly scattering ti...

متن کامل

Confocal Microscopy of Director Structures in Strongly Confined and Composite Systems

We review approaches for simultaneous imaging of three-dimensional director structures and component distributions in composite materials using fluorescence confocal polarizing microscopy. To study dynamic processes in these systems, we use the Nipkow-disk microscope in which the confocal images are obtained within milliseconds. The visualized director fields, free-standing film profiles, and o...

متن کامل

Rapid three-dimensional imaging of individual insulin release events by Nipkow disc confocal microscopy.

Minute-to-minute control of the release of insulin by pancreatic beta-cells in response to glucose or other stimuli requires the precise delivery of large dense-core vesicles to the plasma membrane and regulated exocytosis. At present, the precise spatial organization at the cell surface and the nature of these events ('transient' versus 'full fusion') are debated. In order to monitor secretory...

متن کامل

Adaptive optics confocal microscopy using fluorescent protein guide- stars for brain tissue imaging

Optical aberrations due to the inhomogeneous refractive index of tissue degrade the resolution and brightness of images in deep tissue imaging. We introduce a direct wavefront sensing method using cellular structures labeled with fluorescent proteins in tissues as guide-stars. As a non-invasive and high-speed method, it generalizes the direct wavefront sensing method for adaptive optics microsc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of integrative neuroscience

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2011