Low-dose 4DCT reconstruction via temporal nonlocal means.
نویسندگان
چکیده
PURPOSE Four-dimensional computed tomography (4DCT) has been widely used in cancer radiotherapy for accurate target delineation and motion measurement for tumors in the thorax and upper abdomen areas. However, its prolonged scanning duration causes a considerable increase of radiation dose compared to conventional CT, which is a major concern in its clinical application. This work is to develop a new algorithm to reconstruct 4DCT images from undersampled projections acquired at low mA s levels in order to reduce the imaging dose. METHODS Conventionally, each phase of 4DCT is reconstructed independently using the filtered backprojection (FBP) algorithm. The basic idea of the authors' new algorithm is that by utilizing the common information among different phases, the input information required to reconstruct the image of high quality, and thus the imaging dose, can be reduced. The authors proposed a temporal nonlocal means (TNLM) method to explore the interphase similarity. All phases of the 4DCT images are reconstructed simultaneously by minimizing a cost function consisting of a data fidelity term and a TNLM regularization term. The authors utilized a modified forward-backward splitting algorithm and a Gauss-Jacobi iteration method to efficiently solve the minimization problem. The algorithm was also implemented on a graphics processing unit (GPU) to improve the computational speed. The authors' reconstruction algorithm has been tested on a digital NCAT thorax phantom in three low dose scenarios: All projections with low mA s level, undersampled projections with high mA s level, and undersampled projections with low mA s level. RESULTS In all three low dose scenarios, the new algorithm generates visually much better CT images containing less image noise and streaking artifacts compared to the standard FBP algorithm. Quantitative analysis shows that by comparing the authors' TNLM algorithm to the standard FBP algorithm, the contrast-to-noise ratio has been improved by a factor of 3.9-10.2 and the signal-to-noise ratio has been improved by a factor of 2.1-5.9, depending on the cases. In the situation of undersampled projection data, the majority of the streaks in the images reconstructed by FBP can be suppressed using the authors' algorithm. The total reconstruction time for all ten phases of a slice ranges from 40 to 90 s on an NVIDIA Tesla C1060 GPU card. CONCLUSIONS The experimental results indicate that the authors' new algorithm outperforms the conventional FBP algorithm in effectively reducing the image artifacts due to undersampling and suppressing the image noise due to the low mA s level.
منابع مشابه
A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملAccurate Sparse-Projection Image Reconstruction via Nonlocal TV Regularization
Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur...
متن کاملReconstruction of 3D dynamic contrast-enhanced magnetic resonance imaging using nonlocal means.
PURPOSE To develop and test a nonlocal means-based reconstruction algorithm for undersampled 3D dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of tumors. MATERIALS AND METHODS We propose a reconstruction technique that is based on the recently proposed nonlocal means (NLM) filter which can relax trade-offs in spatial and temporal resolutions in dynamic imaging. Unlike the or...
متن کاملImproved Reconstruction of Highly Under-sampled MR angiography Images Using Modified Nonlocal Means
Introduction In dynamic MRI Angiography, data acquisition of each frame is usually reduced to a small amount due to the requirement of high spatio-temporal resolution, which will lead to poor image quality (including artifacts and noise) in reconstruction. Traditional method improves the spatial resolution of each frame image through the sliding-window filtering in temporal direction [1]. In th...
متن کاملTemporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 38 3 شماره
صفحات -
تاریخ انتشار 2011