Apoptotic and chemotherapeutic properties of iron (III)-salophene in an ovarian cancer animal model
نویسندگان
چکیده
The cytotoxicity of organometallic compounds iron(III)-, cobalt(III)-, manganese(II)-, and copper(II)-salophene (-SP) on platinum-resistant ovarian cancer cell lines was compared. Fe-SP displayed selective cytotoxicity (IC(50) at ~1 muM) against SKOV-3 and OVCAR-3 cell lines while Co-SP caused cytotoxic effects only at higher concentrations (IC(50) at 60 muM) and Cu-SP effects were negligible. High cytotoxicity of Mn-SP (30-60 muM) appeared to be nonspecific because the Mn-chloride salt reduced cell viability similarly. The effect of Fe-SP at 1 muM proved to be ovarian cancer cell selective when compared to a panel of cell lines derived from different tumors. The first irreversible step in the induction of cell death by Fe-SP occurred after 3 hrs as indicated by the mitochondrial transmembrane potential (DeltaPsim) and was mainly linked to apoptotic, not necrotic events. To evaluate the toxicity of Fe-SP in vivo we conducted an acute toxicity study in rats. The LD(50) of Fe-SP is >2000 mg/kg orally and >5.5 mg/kg body weight by intraperitoneal injection. An ovarian cancer animal model showed that the chemotherapeutic relevant dose of Fe-SP in rats is 0.5-1 mg/kg body weight. The present report suggests that Fe-SP is a potential therapeutic drug to treat ovarian cancer.
منابع مشابه
Organometallic Iron(III)-Salophene Exerts Cytotoxic Properties in Neuroblastoma Cells via MAPK Activation and ROS Generation
The objective of the present study was to investigate the specific effects of Iron(III)-salophene (Fe-SP) on viability, morphology, proliferation, cell cycle progression, ROS generation and pro-apoptotic MAPK activation in neuroblastoma (NB) cells. A NCI-DTP cancer screen revealed that Fe-SP displayed high toxicity against cell lines of different tumor origin but not tumor type-specificity. In ...
متن کاملIron(III)-Salophene: An Organometallic Compound with Selective Cytotoxic and Anti-Proliferative Properties in Platinum-Resistant Ovarian Cancer Cells
BACKGROUND In this pioneer study to the biological activity of organometallic compound Iron(III)-salophene (Fe-SP) the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated. METHODOLOGY/PRINCIPAL FINDINGS Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelia...
متن کاملCytotoxic and Pro-Apoptotic Effects of Honey Bee Venom and Chrysin on Human Ovarian Cancer Cells
Background: The anti-cancer effects of honey bee venom (BV) and chrysin might open a new window for treatment of chemo-resistant cancers. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV and chrysin on A2780cp cistplatin- resistant human ovarian cancer cells. Methods: As per the study objectives, A2780cp cells were categorized to 4 groups: 3 experiment groups (treat...
متن کاملCYTOTOXIC EFFECTS OF ARTEMISIA ABSINTHIUM EXTRACT ON A2780 CELL LINE (OVARIAN CANCER) AND ALTERATION OF APOPTOTIC GENES EXPRESSION LEVELS
Background & Aims: Ovarian cancer is the third most common cancer in women. Artemisia is one of the most commonly used medicinal plants, and Artemisia absinthium is one of the important species of this genus. The aim of this study was to evaluate the effect of cytotoxicity and the ability to induce apoptosis methanolic extract of A. absinthium in A2780 cell line (human ovarian cancer). Materia...
متن کاملAnticancer effect of Artemisia extract and cisplatin on induction of apoptosis and inhibition of proliferation in A2780 human ovarian cancer
Cisplatin, as a chemotherapy drug, causes serious side effects in the advanced stages of the cancer. Recently, Artemisia has been considered for its bioactive compounds, anti-proliferative and anti-inflammatory effects. The aim of this study was to evaluate the anti-cancer and anti-metastatic effects of the methanolic extract of aerial organs of Artemisia and cisplatin, either alone or in combi...
متن کامل