Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality
نویسندگان
چکیده
We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x, y) = f(x)+Q(x, y)+g(y), where f : Rn → R∪{+∞} and g : Rm → R∪{+∞} are proper lower semicontinuous functions, and Q : Rn × Rm → R is a smooth C function which couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gauss-Seidel method to minimize L. We work in a nonconvex setting, just assuming that the function L satisfies the KurdykaLojasiewicz inequality. An entire section illustrates the relevancy of such an assumption by giving examples ranging from semialgebraic geometry to “metrically regular” problems. Our main result can be stated as follows: If L has the KurdykaLojasiewicz property, then each bounded sequence generated by the algorithm converges to a critical point of L. This result is completed by the study of the convergence rate of the algorithm, which depends on the geometrical properties of the function L around its critical points. When specialized to Q(x, y) = ‖x− y‖2 and to f , g indicator functions, the algorithm is an alternating projection mehod (a variant of Von Neumann’s) that converges for a wide class of sets including semialgebraic and tame sets, transverse smooth manifolds or sets with “regular ”intersection. In order to illustrate our results with concrete problems, we provide a convergent proximal reweighted l algorithm for compressive sensing and an application to rank reduction problems.
منابع مشابه
Inertial proximal alternating minimization for nonconvex and nonsmooth problems
In this paper, we study the minimization problem of the type [Formula: see text], where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove...
متن کاملCharacterizations of ÃLojasiewicz inequalities :
The classical à Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative chara...
متن کاملiPiano: Inertial Proximal Algorithm for Nonconvex Optimization
In this paper we study an algorithm for solving a minimization problem composed of a differentiable (possibly nonconvex) and a convex (possibly nondifferentiable) function. The algorithm iPiano combines forward-backward splitting with an inertial force. It can be seen as a nonsmooth split version of the Heavy-ball method from Polyak. A rigorous analysis of the algorithm for the proposed class o...
متن کاملLearning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds
In this paper we consider minimization problems with constraints. We show that if the set of constraints is a Riemannian manifold of non positive curvature and the objective function is lower semicontinuous and satisfies the Kurdyka-Lojasiewicz property, then the alternating proximal algorithm in Euclidean space is naturally extended to solve that class of problems. We prove that the sequence g...
متن کاملAlternating minimization and projection methods for structured nonconvex problems
We study the convergence properties of an alternating proximal minimization algorithm for nonconvex structured functions of the type: L(x, y) = f(x)+Q(x, y)+g(y), where f : R → R∪{+∞} and g : R → R∪{+∞} are proper lower semicontinuous functions, and Q : R × R → R is a smooth C function which couples the variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 35 شماره
صفحات -
تاریخ انتشار 2010