Titin Extensibility In Situ: Entropic Elasticity of Permanently Folded and Permanently Unfolded Molecular Segments

نویسندگان

  • Karoly Trombitás
  • Marion Greaser
  • Siegfried Labeit
  • Jian-Ping Jin
  • Miklós Kellermayer
  • Michiel Helmes
  • Henk Granzier
چکیده

Titin (also known as connectin) is a giant protein that spans half of the striated muscle sarcomere. In the I-band titin extends as the sarcomere is stretched, developing what is known as passive force. The I-band region of titin contains tandem Ig segments (consisting of serially linked immunoglobulin-like domains) with the unique PEVK segment in between (Labeit, S., and B. Kolmerer. 1995. Science. 270:293-296). Although the tandem Ig and PEVK segments have been proposed to behave as stiff and compliant springs, respectively, precise experimental testing of the hypothesis is still needed. Here, sequence-specific antibodies were used to mark the ends of the tandem Ig and PEVK segments. By following the extension of the segments as a function of sarcomere length (SL), their respective contributions to titin's elastic behavior were established. In slack sarcomeres (approximately 2.0 micron) the tandem Ig and PEVK segments were contracted. Upon stretching sarcomeres from approximately 2.0 to 2.7 micron, the "contracted" tandem Ig segments straightened while their individual Ig domains remained folded. When sarcomeres were stretched beyond approximately 2.7 micron, the tandem Ig segments did not further extend, instead PEVK extension was now dominant. Modeling tandem Ig and PEVK segments as entropic springs with different bending rigidities (Kellermayer, M., S. Smith, H. Granzier, and C. Bustamante. 1997. Science. 276:1112-1116) indicated that in the physiological SL range (a) the Ig-like domains of the tandem Ig segments remain folded and (b) the PEVK segment behaves as a permanently unfolded polypeptide. Our model provides a molecular basis for the sequential extension of titin's different segments. Initially, the tandem Ig segments extend at low forces due to their high bending rigidity. Subsequently, extension of the PEVK segment occurs only upon reaching sufficiently high external forces due to its low bending rigidity. The serial linking of tandem Ig and PEVK segments with different bending rigidities provides a unique passive force-SL relation that is not achievable with a single elastic segment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle.

Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of ...

متن کامل

Folding-unfolding transitions in single titin molecules characterized with laser tweezers.

Titin, a giant filamentous polypeptide, is believed to play a fundamental role in maintaining sarcomeric structural integrity and developing what is known as passive force in muscle. Measurements of the force required to stretch a single molecule revealed that titin behaves as a highly nonlinear entropic spring. The molecule unfolds in a high-force transition beginning at 20 to 30 piconewtons a...

متن کامل

Tertiary and secondary structure elasticity of a six-Ig titin chain.

The protein titin functions as a mechanical spring conferring passive elasticity to muscle. Force spectroscopy studies have shown that titin exhibits several regimes of elasticity. Disordered segments bring about a soft, entropic spring-type elasticity; secondary structures of titin's immunoglobulin-like (Ig-) and fibronectin type III-like (FN-III) domains provide a stiff elasticity. In this st...

متن کامل

Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model.

The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extens...

متن کامل

Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations

Atomic force microscopy and steered molecular dynamics investigations of the response of so-called mechanical proteins like titin, tenascin or their individual immunoglobulin and fibronectin type III domains have lead to qualitative insights about the relationship between the b sandwich domain architecture and the function of this class of proteins. The proteins, linear segments of up to hundre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 140  شماره 

صفحات  -

تاریخ انتشار 1998