Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins.
نویسندگان
چکیده
Examination of Bacillus subtilis strains containing multiple mutations affecting the class A high-molecular-weight penicillin-binding proteins (PBPs) 1, 2c, and 4 revealed a significant degree of redundancy in the functions of these three proteins. In rich media, loss of PBPs 2c and 4 resulted in no obvious phenotype. The slight growth and cell morphology defects associated with loss of PBP 1 were exacerbated by the additional loss of PBP 4 but not PBP 2c. Loss of all three of these PBPs slowed growth even further. In minimal medium, loss of PBPs 2c and 4 resulted in a slight growth defect. The decrease in growth rate caused by loss of PBP 1 was accentuated slightly by loss of PBP 2c and greatly by loss of PBP 4. Again, a lack of all three of these PBPs resulted in the slowest growth. Loss of PBP 1 resulted in a 22% reduction in the cell radius. Cultures of a strain lacking PBP 1 also contained some cells that were significantly longer than those produced by the wild type, and some of the rod-shaped cells appeared slightly bent. The additional loss of PBP 4 increased the number of longer cells in the culture. Slow growth caused by a mutation in prfA, a gene found in an operon with the gene encoding PBP 1, was unaffected by the additional loss of PBPs 2c and 4, whereas loss of both prfA and PBP 1 resulted in extremely slow growth and the production of highly bent cells.
منابع مشابه
Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth.
Bacillus subtilis strains lacking penicillin-binding protein 1 (PBP1), encoded by ponA, required greater amounts of Mg2+ or Ca2+ for vegetative growth or spore outgrowth than the wild-type strain and strains lacking other high-molecular-weight (HMW) PBPs. Growth of ponA cells in a medium low in Mg2+ also resulted in greatly increased cell bending compared to wild-type cells or cells lacking oth...
متن کاملSeptal localization of penicillin-binding protein 1 in Bacillus subtilis.
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in ...
متن کاملStudies of the high molecular weight penicillin-binding proteins of Bacillus subtilis.
Seven or eight penicillin-binding proteins (PBPs) were detected in Bacillus subtilis membranes. By introducing covalent affinity chromatography employing cephalosporins as ligands, milligram amounts of three high molecular weight PBPs (PBP 1 ab, Mr = 120,000; PBP 2b, Mr = 94,000; and PBP 4, Mr = 78,000) were obtained without any contamination of the major PBP 5, the D-alanine carboxypeptidase. ...
متن کاملCortex synthesis during Bacillus subtilis sporulation depends on the transpeptidase activity of SpoVD
The nonessential process of peptidoglycan synthesis during Bacillus subtilis sporulation is one model to study bacterial cell wall biogenesis. SpoVD is a class B high-molecular-weight penicillin-binding protein that is specific for sporulation. Strains lacking this protein produce spores without the peptidoglycan cortex layer and are heat sensitive. The detailed functions of the four different ...
متن کاملIdentification and characterization of pbpC, the gene encoding Bacillus subtilis penicillin-binding protein 3.
Penicillin-binding proteins (PBPs) are enzymes involved in the synthesis of peptidoglycan structures in Bacillus subtilis such as the vegetative cell wall and the spore cortex. The B. subtilis sequencing project has identified a gene (orf16, EMBL accession number D38161) which exhibits significant sequence similarity to genes encoding class B high-molecular-weight PBPs. We have found that orf16...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 7 شماره
صفحات -
تاریخ انتشار 1996