Extracting paraphrase patterns from bilingual parallel corpora

نویسندگان

  • Shiqi Zhao
  • Haifeng Wang
  • Ting Liu
  • Sheng Li
چکیده

Paraphrase patterns are semantically equivalent patterns, which are useful in both paraphrase recognition and generation. This paper presents a pivot approach for extracting paraphrase patterns from bilingual parallel corpora, whereby the paraphrase patterns in English are extracted using the patterns in another language as pivots. We make use of log-linear models for computing the paraphrase likelihood between pattern pairs and exploit feature functions based on maximum likelihood estimation (MLE), lexical weighting (LW), and monolingual word alignment (MWA). Using the presented method, we extract more than 1 million pairs of paraphrase patterns from about 2 million pairs of bilingual parallel sentences. The precision of the extracted paraphrase patterns is above 78%. Experimental results show that the presented method significantly outperforms a well-known method called discovery of inference rules from text (DIRT). Additionally, the log-linear model with the proposed feature functions are effective. The extracted paraphrase patterns are fully analyzed. Especially, we found that the extracted paraphrase patterns can be classified into five types, which are useful in multiple natural language processing (NLP) applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pivot Approach for Extracting Paraphrase Patterns from Bilingual Corpora

Paraphrase patterns are useful in paraphrase recognition and generation. In this paper, we present a pivot approach for extracting paraphrase patterns from bilingual parallel corpora, whereby the English paraphrase patterns are extracted using the sentences in a foreign language as pivots. We propose a loglinear model to compute the paraphrase likelihood of two patterns and exploit feature func...

متن کامل

Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-to-Text Generation

Previous work has shown that high quality phrasal paraphrases can be extracted from bilingual parallel corpora. However, it is not clear whether bitexts are an appropriate resource for extracting more sophisticated sentential paraphrases, which are more obviously learnable from monolingual parallel corpora. We extend bilingual paraphrase extraction to syntactic paraphrases and demonstrate its a...

متن کامل

Enlarging Paraphrase Collections through Generalization and Instantiation

This paper presents a paraphrase acquisition method that uncovers and exploits generalities underlying paraphrases: paraphrase patterns are first induced and then used to collect novel instances. Unlike existing methods, ours uses both bilingual parallel and monolingual corpora. While the former are regarded as a source of high-quality seed paraphrases, the latter are searched for paraphrases t...

متن کامل

Paraphrasing with Bilingual Parallel Corpora

Previous work has used monolingual parallel corpora to extract and generate paraphrases. We show that this task can be done using bilingual parallel corpora, a much more commonly available resource. Using alignment techniques from phrasebased statistical machine translation, we show how paraphrases in one language can be identified using a phrase in another language as a pivot. We define a para...

متن کامل

PPDB: The Paraphrase Database

We present the 1.0 release of our paraphrase database, PPDB. Its English portion, PPDB:Eng, contains over 220 million paraphrase pairs, consisting of 73 million phrasal and 8 million lexical paraphrases, as well as 140 million paraphrase patterns, which capture many meaning-preserving syntactic transformations. The paraphrases are extracted from bilingual parallel corpora totaling over 100 mill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Natural Language Engineering

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009