Changes in the limb kinematics and walking-distance estimation after shank elongation: evidence for a locomotor body schema?
نویسندگان
چکیده
When walking, step length provides critical information on traveled distance along the ongoing path [corrected] Little is known on the role that knowledge about body dimensions plays within this process. Here we directly addressed this question by evaluating whether changes in body proportions interfere with computation of traveled distance for targets located outside the reaching space. We studied locomotion and distance estimation in an achondroplastic child (ACH, 11 yr) before and after surgical elongation of the shank segments of both lower limbs and in healthy adults walking on stilts, designed to mimic shank-segment elongation. Kinematic analysis of gait revealed that dynamic coupling of the thigh, shank, and foot segments changed substantially as a result of elongation. Step length remained unvaried, in spite of the significant increase in total limb length ( approximately 1.5-fold). These relatively shorter strides resulted from smaller oscillations of the shank segment, as would be predicted by proportional increments in limb size and not by asymmetrical segmental increment as in the present case (length of thighs was not modified). Distance estimation was measured by walking with eyes closed toward a memorized target. Before surgery, the behavior of ACH was comparable to that of typically developing participants. In contrast, following shank elongation, the ACH walked significantly shorter distances when aiming at the same targets. Comparable changes in limb kinematics, stride length, and estimation of traveled distance were found in adults wearing on stilts, suggesting that path integration errors in both cases were related to alterations in the intersegmental coordination of the walking limbs. The results are consistent with a dynamic locomotor body schema used for controlling step length and path estimation, based on inherent relationships between gait parameters and body proportions.
منابع مشابه
Strength Training and Kinematics Parameters of Gait in Healthy Female Elderly
Objectives: This study was under taken to consider the effect of strength training on some kinematics parameters of gait (step length, cadence and speed walking). Methods & Materials: Twenty-four healthy elderly women (with average and standard deviation age of 61.53±2.84 years, height of 157.1±5.5 cm, weight of 69.13±7.6 kg and BMI 28.1±3.6 kg/m) participated in this study. The strength of ...
متن کاملGender Differences in Intra Limb Coordination while Walking in Older People
Objectives: Knowledge about gender differences in intra-limb coordination during walking provides insight into the adaptability of central nervous system for controlling gait in older adults. We assessed the variability and phase dynamic of the intra-limb coordination in older men and women during walking. Methods: Twenty two older people, 11 female and 11 male, participated in this study. T...
متن کاملAlternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.
Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we ...
متن کاملImpact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
It has been proposed that proprioceptive input is essential to the development of a locomotor body schema that is used to guide the assembly of successful walking. Proprioceptive information is used to signal the need for, and promotion of, locomotor adaptation in response to environmental or internal modifications. The purpose of this investigation was to determine if tendon vibration applied ...
متن کاملIdentifying classifier input signals to predict a cross-slope during transtibial amputee walking
Advanced prosthetic foot designs often incorporate mechanisms that adapt to terrain changes in real-time to improve mobility. Early identification of terrain (e.g., cross-slopes) is critical to appropriate adaptation. This study suggests that a simple classifier based on linear discriminant analysis can accurately predict a cross-slope encountered (0°, -15°, 15°) using measurements from the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 3 شماره
صفحات -
تاریخ انتشار 2009