Strong Shift Equivalence and the Generalized Spectral Conjecture for Nonnegative Matrices

نویسنده

  • MIKE BOYLE
چکیده

Given matrices A and B shift equivalent over a dense subring R of R, with A primitive, we show that B is strong shift equivalent over R to a primitive matrix. This result shows that the weak form of the Generalized Spectral Conjecture for primitive matrices implies the strong form. The foundation of this work is the recent result that for any ring R, the group NK1(R) of algebraic K-theory classifies the refinement of shift equivalence by strong shift equivalence for matrices over R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

Algebraic Shift Equivalence and Primitive Matrices

Motivated by symbolic dynamics, we study the problem, given a unital subring 5 of the reals, when is a matrix A algebraically shift equivalent over S to a primitive matrix? We conjecture that simple necessary conditions on the nonzero spectrum of A are sufficient, and establish the conjecture in many cases. If S is the integers, we give some lower bounds on sizes of realizing primitive matrices...

متن کامل

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

The Work of Kim and Roush in Symbolic Dynamics

Contents 1. Introduction 1 2. Decidability results 1 3. Shift and strong shift equivalence for Boolean matrices 3 4. Strong shift equivalence of positive matrices over subrings of R 4 5. Automorphisms of the shift 4 6. The nonzero spectra of nonnegative integral matrices 6 7. The classification problem for shifts of finite type 6 8. Classification of free Z p actions on mixing SFTs 7 9. Topolog...

متن کامل

Ela Bounds on the Spectral Radius of a Hadamard Product of Nonnegative or Positive Semidefinite Matrices

X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015