HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3

نویسندگان

  • Xiaokun Liu
  • Cha Yang
  • Yong Hu
  • Erming Lei
  • Xian Lin
  • Lianzhong Zhao
  • Zhong Zou
  • Anding Zhang
  • Hongbo Zhou
  • Huanchun Chen
  • Ping Qian
  • Meilin Jin
چکیده

Influenza virus NS2 is well known for its role in viral ribonucleoprotein nuclear export; however, its function has not been fully understood. A recent study showed that NS2 might interact with HIST1H1C (H1C, H1.2). Histones have been found to affect influenza virus replication, such as the H2A, H2B, H3, and H4, but H1 has not been detected. Here, we found that H1C interacts with NS2 via its C-terminal in the nucleus and that H1C affects influenza virus replication. The H1N1 influenza virus replicates better in H1C knockout A549 cells compared to wild-type A549 cells, primarily because of the regulation of H1C on interferon-β (IFN-β). Further studies showed that the H1C phosphorylation mutant (T146A) decreases IFN-β, while H1C methylation mutants (K34A, K187A) increases IFN-β by releasing the nucleosome and promoting IRF3 binding to the IFN-β promoter. Interestingly, NS2 interacts with H1C, which reduces H1C-IRF3 interaction and results in the inhibition of IFN-β enhanced by H1C. In summary, our study reveals a novel function of H1C to regulate IFN-β and uncovers an underlying mechanism, which suggests H1C plays a role in epigenetic regulation. Moreover, our results suggest a novel mechanism for the influenza virus to antagonize the innate immune response by NS2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influenza A Virus PA Antagonizes Interferon-β by Interacting with Interferon Regulatory Factor 3

The influenza A virus (IAV) can be recognized by retinoic acid-inducible gene I (RIG-I) to activate the type I interferon response and induce antiviral effects. The virus has evolved several strategies to evade the innate immune response, including non-structural protein 1 (NS1) and its polymerase subunits. The mechanism by which NS1 inhibits interferon-β (IFN-β) is well understood, whereas the...

متن کامل

Pomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study

Objective: Influenza virus, which is associated with high level of morbidity and mortality, has been recently considered a public health concern; however, the methods of choice to control and treat it are limited. Our previous study showed anti-influenza virus activity of pomegranate peel extract (PPE). In this study, the mechanism through which PPE acts against influenza virus...

متن کامل

TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1

TANK-binding kinase 1 (TBK1) plays an essential role in Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I)-mediated induction of type I interferon (IFN; IFN-α/β) and host antiviral responses. How TBK1 activity is negatively regulated remains largely unknown. We report that TNF receptor-associated factor (TRAF)-interacting protein (TRIP) promotes proteasomal degradation of TBK1...

متن کامل

TRIM26 Negatively Regulates Interferon-β Production and Antiviral Response through Polyubiquitination and Degradation of Nuclear IRF3

Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I inteferons, which induce the transcription of various antiviral genes called interferon stimulated genes (ISGs) to eliminate viral infection. IRF3 activation requires phosphorylation, dimerization and nuclear translocation. However, the mechanisms for the termination of IRF3 activation in nu...

متن کامل

A cell-based screening system for anti-influenza A virus agents

Emerging of drug resistant influenza A virus (IAV) has been a big challenge for anti-IAV therapy. In this study, we describe a relatively easy and safe cell-based screening system for anti-IAV replication inhibitors using a non-replicative strain of IAV. A nickel (II) complex of polyhydroxybenzaldehyde N4-thiosemicarbazone (NiPT5) was recently found to exhibit anti-inflammatory activity in vivo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017