Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung

نویسندگان

  • Seyedmojtaba Seyedmousavi
  • Michael J Davis
  • Janyce A Sugui
  • Tzvia Pinkhasov
  • Shannon Moyer
  • Andres M Salazar
  • Yun C Chang
  • Kyung J Kwon-Chung
چکیده

Invasive aspergillosis (IA) remains the primary cause of morbidity and mortality in chronic granulomatous disease (CGD) patients, often due to infection by Aspergillus species refractory to antifungals. This motivates the search for alternative treatments, including immunotherapy. We investigated the effect of exogenous type I interferon (IFN) activation on the outcome of IA caused by three Aspergillus species, A. fumigatus, A. nidulans, and A. tanneri, in CGD mice. The animals were treated with poly(I):poly(C) carboxymethyl cellulose poly-l-lysine (PICLC), a mimetic of double-stranded RNA, 24 h preinfection and postinfection. The survival rates and lung fungal burdens were markedly improved by PICLC immunotherapy in animals infected with any one of the three Aspergillus species. While protection from IA was remarkable, PICLC induction of type I IFN in the lungs surged 24 h posttreatment and returned to baseline levels by 48 h, suggesting that PICLC altered early events in protection against IA. Immunophenotyping of recruited leukocytes and histopathological examination of tissue sections showed that PICLC induced similar cellular infiltrates as those in untreated-infected mice, in both cases dominated by monocytic cells and neutrophils. However, the PICLC immunotherapy resulted in a marked earlier recruitment of the leukocytes. Unlike with conidia, infection with A. nidulans germlings reduced the protective effect of PICLC immunotherapy. Additionally, antibody depletion of neutrophils totally reversed the protection, suggesting that neutrophils are crucial for PICLC-mediated protection. Together, these data show that prophylactic PICLC immunotherapy prerecruits these cells, enabling them to attack the conidia and thus resulting in a profound protection from IA.IMPORTANCE Patients with chronic granulomatous disease (CGD) are highly susceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied Aspergillus species, CGD patients often suffer IA caused by A. nidulans, A. tanneri, and other rare species. These non-fumigatus Aspergillus species are more resistant to antifungal drugs and cause higher fatality rates than A. fumigatus Therefore, alternative therapies are needed to protect CGD patients. We report an effective immunotherapy of mice infected with three Aspergillus species via PICLC dosing. While protection from IA was long lasting, PICLC induction of type I IFN surged but quickly returned to baseline levels, suggesting that PICLC was altering early events in IA. Interestingly, we found responding immune cells to be similar between PICLC-treated and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier recruitment of the leukocytes and suppressed fungal growth. This study highlights the value of type I IFN induction in CGD patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteomyelitis and lung abscess due to Aspergillus fumigatus in a chronic granulomatous disease patient

Background and Purpose: Chronic granulomatous disease (CGD) is an inherited disorder of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. This disorder results in recurrent life-threatening bacterial and fungal infections. Aspergillus species are the most common fungal infections in these patients. Case Report: Herein, we present a case of fungal infection in a girl wi...

متن کامل

Invasive aspergillosis in chronic granulomatous disease.

Chronic granulomatous disease (CGD) is an inherited disorder of the NADPH oxidase complex in which phagocytes are defective in generating superoxide anion and its metabolites. NADPH oxidase activation leads to activation of sequestered neutrophil proteases that mediate host defense. Invasive aspergillosis and other rarer mold diseases are the leading causes of mortality in CGD, reflecting the k...

متن کامل

Impaired Host Defense, Hematopoiesis, Granulomatous Inflammation and Type 1–Type 2 Cytokine Balance in Mice Lacking CC Chemokine Receptor 1

CC chemokine receptor 1 (CCR1) is expressed in neutrophils, monocytes, lymphocytes, and eosinophils, and binds the leukocyte chemoattractant and hematopoiesis regulator macrophage inflammatory protein (MIP)-1alpha, as well as several related CC chemokines. Four other CCR subtypes are known; their leukocyte and chemokine specificities overlap with, but are not identical to, CCR1, suggesting that...

متن کامل

Osteomyelitis and lung abscess due to Aspergillus fumigatus in a chronic granulomatous disease patient

BACKGROUND AND PURPOSE Chronic granulomatous disease (CGD) is an inherited disorder of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. This disorder results in recurrent life-threatening bacterial and fungal infections. Aspergillus species are the most common fungal infections in these patients. CASE REPORT Herein, we present a case of fungal infection in a girl with ...

متن کامل

Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice.

Immunity to mycobacterial infection is closely linked to the emergence of T cells that secrete cytokines, gamma interferon (IFN-gamma), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-alpha), resulting in macrophage activation and recruitment of circulating monocytes to initiate chronic granuloma formation. The cytokine that mediates macrophage activation is IFN-gamma, and, like IL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018