Applications of Discrete Mathematics for Understanding Dynamics of Synapses and Networks in Neuroscience

نویسنده

  • Caitlyn M. Parmelee
چکیده

Adviser: Professor Carina Curto Mathematical modeling has broad applications in neuroscience whether we are modeling the dynamics of a single synapse or the dynamics of an entire network of neurons. In Part I, we model vesicle replenishment and release at the photoreceptor synapse to better understand how visual information is processed. In Part II, we explore a simple model of neural networks with the goal of discovering how network structure shapes the behavior of the network. Vision plays an important role in how we interact with our environments. To fully understand how visual information is processed requires an understanding of the way signals are transformed at the very first synapse: the ribbon synapse of photoreceptor neurons (rods and cones). These synapses possess a ribbon-like structure on which approximately 100 synaptic vesicles can be stored, allowing graded responses through the release of different numbers of vesicles in response to visual input. These responses depend critically on the ability of the ribbon to replenish itself as ribbon sites empty upon release. The rate of vesicle replenishment is thus an important factor in shaping neural coding in the retina. In collaboration with experimental neuroscientists we developed a mathematical model to describe the dynamics of vesicle release and replenishment at the ribbon synapse. To learn more about how network architecture shapes the dynamics of the network, we study a specific type of threshold-linear network that is constructed from a simple directed graph. These networks are particularly well suited for our study because the network construction guarantees that differences in dynamics arise solely from differences in the connectivity of the underlying graph. By design, the activity of these networks is bounded and there are no stable fixed points. Computational experiments show that most of these networks yield limit cycles where the neurons fire in sequence. Can we predict the order in which the neurons fire? To this end, we devised an algorithm to predict the sequence of firing using the structure of the underlying graph. Using the algorithm we classify all the networks of this type on five or fewer nodes. iv COPYRIGHT And to Matt, to whom I owe this. vi ACKNOWLEDGMENTS I would like to first thank my advisor, Dr. Carina Curto, for her support and encouragement over the last few years. The amazing opportunities she has provided me have been invaluable. Another thank you goes out to the other members of my …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Session 43: Stochastic Networks with Applications to Neuroscience

Dynamical networks feature a rich variety of spatio-temporal phenomena including synchrony, bursting and avalanches, formation of clusters and waves, intermittency, and chaos. Understanding the mechanisms underlying network dynamics requires a combination of tools from several mathematical disciplines: dynamical systems, stochastic processes, and discrete mathematics. The talks in this special ...

متن کامل

Using the Theory of Network in Finance

It is very important for managers, investors and financial policy-makers to detect and analyze factors affecting financial markets to obtain optimal decision and reduce risks. The importance of market analysis and attempt to improve its behavior understanding, has led analysts to use the experiences of other professionals in the fields such as social sciences and mathematics to examine the inte...

متن کامل

Optimization of Energy Consumption in Image Transmission in Wireless Sensor Networks (WSNs) using a Hybrid Method

In wireless sensor networks (WSNs)‎, ‎sensor nodes have limited resources with regard to computation‎, ‎storage‎, ‎communication bandwidth‎, ‎and the most important of all‎, ‎energy supply‎. ‎In addition‎, ‎in many applications of sensor networks‎, ‎we need to send images to a sink node‎. ‎Therefore‎, ‎we have to use methods for sending images in which the number and volume of packets are optim...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016