The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox
نویسندگان
چکیده
Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window--also called inherent unsaturation or partial pressure vacancy--but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of decompression after saturation with nitrogen-based breathing mixtures.
منابع مشابه
Effect of oxygen tension and rate of pressure reduction during decompression on central gas bubbles.
Reduction in ascent speed and an increase in the O2 tension in the inspired air have been used to reduce the risk for decompression sickness. It has previously been reported that decompression speed and O2 partial pressure are linearly related for human decompressions from saturation hyperbaric exposures. The constant of proportionality K (K = rate/partial pressure of inspired O2) indicates the...
متن کاملHeliox, nitrox, and trimix diving; hyperbaric oxygen treatment; and a flaw in Henry's law.
The Viewpoint by Ran Arieli published below addresses the topic of the physiology of “mixed-gas diving.” You are invited to submit a brief commentary on this Viewpoint, which will be reviewed by Journal editors for possible publication in the Journal of Applied Physiology. Please limit your comment to 250 words and 5 peer-reviewed published references. NON-AIR OR MIXED-GAS DIVING was developed ...
متن کاملExperiment of nitrox saturation diving with trimix excursion.
Depth limitations to diving operation with air as the breathing gas are well known: air density, oxygen toxicity, nitrogen narcosis and requirement for decompression. The main objectives of our experiment were to assess the decompression, counterdiffusion and performance aspect of helium-nitrogen-oxygen excursions from nitrox saturation. The experiment was carried out in a wet diving stimulator...
متن کاملAmbient air, oxygen and nitrox effects on cognitive performance at altitude.
The effects on cognitive performance of breathing air, oxygen and nitrox gas mixtures at surface ambient pressures were investigated during an expedition to the Everest region of Nepal. A slight improvement in grammatical reasoning at altitude was found under nitrox (p < 0.05) and mathematical reasoning showed improvement at altitude on air (p < 0.05), oxygen (p < 0.01) and nitrox (p < 0.01). T...
متن کاملModeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology
In this present study the dissolved air flotation (DAF) system was investigated for the treatment of Kermanshah Oil Refinery wastewater. The effect of three parameters on flotation efficiency including of flow rate (outflow from the flotation tank), saturation pressure and coagulant dosage on chemical oxygen demand (COD) removal was examined experimentally. All the experiments were done under a...
متن کامل