Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results
نویسندگان
چکیده
An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nbbased superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al2O3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L21 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L21 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al2O3 passivation. However, the oxidation study of a Nb–Hf–Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb–Al alloys, at 1300 C shows the presence of a mixed oxide layer of NbAlO4 and HfO2 exhibiting parabolic growth. 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Quest for Noburnium: 1300c Cyberalloy
A multi-institutional, multidisciplinary project addresses optimal integration of computational design and efficient experimentation for the accelerated design and development of high performance materials using the example of Nb-based superalloys combining oxidation resistance, creep strength and ductility for aeroturbine applications operating at 1300 ̊C and above. Integrated within a systems ...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملAb initio Calculations SWNTs and Investigation of Interaction Atoms of Oxygen with that by Computational Calculations
In this work, theoretical investigations on carbon nanotube with oxygen atom have been carried out by firstprinciplescalculations and density functional theory and hartree fock theory in 3-216 and 6-316 basis sets. Theinteraction energy of the oxygen atom to a CNT is calculated. The effects of this substitutions have beeninvestigated on the during transplantation (10,0) single-walled carbon nan...
متن کاملAB Initio Calculations and IR Studies of Tautometric forms of Uracil and Cytosine and comparing results in different temperatures (25˚C, 37˚C and 40˚C).
In this paper,the molecular geometry for three tautomers of uracil and four tautomers of cytosine has been analyzed. vibrational IR spectra of the tautomers were investigated at HF and B3LYP level using the AB initio 6-31G* and LANL2DZ basis sets from the program package Gaussian 98 (A.7 Public Domain version). The physico-chemical and biochemical properties of uracil and cytosine are one of...
متن کاملAb Initio Theoretical Studies on the Kinetics of the Hydrogen Abstraction Reaction of Hydroxyl Radical with CH3CH2OCF2CHF2 (HFE-374pc2)
The hydrogen abstraction reaction of OH radical with CH3CH2OCF2CHF2 (HFE-374pc2) is investigated theoretically by semi-classical transition state theory. The stationary points on the potential energy surface of the reaction are located by using KMLYP density functional method along with 6-311++G(d,p) basis set. Vibrational anharmonicity coefficients, ...
متن کامل