AMPAR-independent effect of striatal αCaMKII promotes the sensitization of cocaine reward.
نویسندگان
چکیده
Changes in CaMKII-regulated synaptic excitability are a means through which experience may modify neuronal function and shape behavior. While behavior in rodent addiction models is linked with CaMKII activity in the nucleus accumbens (NAc) shell, the key cellular adaptations that forge this link are unclear. Using a mouse strain with striatal-specific expression of autonomously active CaMKII (T286D), we demonstrate that while persistent CaMKII activity induces behaviors comparable to those in mice repeatedly exposed to psychostimulants, it is insufficient to increase AMPAR-mediated synaptic strength in NAc shell. However, autonomous CaMKII upregulates A-type K(+) current (IA) and decreases firing in shell neurons. Importantly, inactivating the transgene with doxycycline eliminates both the IA-mediated firing decrease and the elevated behavioral response to cocaine. This study identifies CaMKII regulation of IA in NAc shell neurons as a novel cellular contributor to the sensitization of cocaine reward.
منابع مشابه
Differences in Rat Dorsal Striatal NMDA and AMPA Receptors following Acute and Repeated Cocaine-Induced Locomotor Activation
Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitizati...
متن کاملInhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine.
Neuronal adaptations in striatal dopamine signaling have been implicated in enhanced responses to addictive drugs. Cyclin-dependent kinase 5 (Cdk5) regulates striatal dopamine signaling and is a downstream target gene of the transcription factor DeltaFosB, which accumulates in striatal neurons after chronic cocaine exposure. Here we investigated the role of Cdk5 activity in the nucleus accumben...
متن کاملShort-term abstinence from cocaine self-administration, but not passive cocaine infusion, elevates αCaMKII autophosphorylation in the rat nucleus accumbens and medial prefrontal cortex.
Increases in alpha calcium/calmodulin-dependent protein kinase type II (αCaMKII) activity in the nucleus accumbens shell has been proposed as a core component in the motivation to self-administer cocaine and in priming-induced drug-seeking. Since cocaine withdrawal promotes drug-seeking, we hypothesized that abstinence from cocaine self-administration should enhance αCaMKII as well. We found th...
متن کاملKalirin-7 mediates cocaine-induced AMPA receptor and spine plasticity, enabling incentive sensitization.
It is well established that behavioral sensitization to cocaine is accompanied by increased spine density and AMPA receptor (AMPAR) transmission in the nucleus accumbens (NAc), but two major questions remain unanswered. Are these adaptations mechanistically coupled? And, given that they can be dissociated from locomotor sensitization, what is their functional significance? We tested the hypothe...
متن کاملLow and high locomotor responsiveness to cocaine predicts intravenous cocaine conditioned place preference in male Sprague-Dawley rats.
Outbred, male Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on cocaine-induced locomotor activity in an open-field arena. This difference reflects cocaine's ability to inhibit the striatal dopamine transporter and predicts development of sensitization. To investigate the relationship between initial cocaine locomotor responsive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2012