An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis.

نویسندگان

  • Changbin Chen
  • Kalyan Pande
  • Sarah D French
  • Brian B Tuch
  • Suzanne M Noble
چکیده

The mammalian gastrointestinal tract and bloodstream are highly disparate biological niches that differ in concentrations of nutrients such as iron. However, some commensal-pathogenic microorganisms, such as the yeast Candida albicans, thrive in both environments. We report the evolution of a transcription circuit in C. albicans that controls iron uptake and determines its fitness in both niches. Our analysis of DNA-binding proteins that regulate iron uptake by this organism suggests the evolutionary intercalation of a transcriptional activator called Sef1 between two broadly conserved iron-responsive transcriptional repressors, Sfu1 and Hap43. Sef1 activates iron-uptake genes and promotes virulence in a mouse model of bloodstream infection, whereas Sfu1 represses iron-uptake genes and is dispensable for virulence but promotes gastrointestinal commensalism. Thus, C. albicans can alternate between genetic programs conferring resistance to iron depletion in the bloodstream versus iron toxicity in the gut, and this may represent a fundamental attribute of gastrointestinal commensal-pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Candida albicans specializations for iron homeostasis: from commensalism to virulence.

Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C. albicans specializations for acquiring iron from specific host molecules in regions where iron is scarce,...

متن کامل

Candida albicans Commensalism and Pathogenicity Are Intertwined Traits Directed by a Tightly Knit Transcriptional Regulatory Circuit

Systemic, life-threatening infections in humans are often caused by bacterial or fungal species that normally inhabit a different locale in our body, particularly mucosal surfaces. A hallmark of these opportunistic pathogens, therefore, is their ability to thrive in disparate niches within the host. In this work, we investigate the transcriptional circuitry and gene repertoire that enable the h...

متن کامل

Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels

Metabolism is integral to the pathogenicity of Candida albicans, a major fungal pathogen of humans. As well as providing the platform for nutrient assimilation and growth in diverse host niches, metabolic adaptation affects the susceptibility of C. albicans to host-imposed stresses and antifungal drugs, the expression of key virulence factors, and fungal vulnerability to innate immune defences....

متن کامل

Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study

Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from y...

متن کامل

Importance of the Candida albicans cell wall during commensalism and infection.

An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell host & microbe

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2011