Asymptotic Behavior of the Hyperbolic Schwarz Map at Irregular Singular Points

نویسندگان

  • TATSUYA KOIKE
  • TAKESHI SASAKI
  • MASAAKI YOSHIDA
چکیده

Geometric study of a second-order Fuchsian differential equation u′′ − q(x)u = 0, where q is rational in x, has been made via the Schwarz map as well as via the hyperbolic and the derived Schwarz maps ([SYY]). When the equation admits an irregular singularity, such a study was first made in [SY] treating the confluent hypergeometric equation and the Airy equation. In this paper, we study the hyperbolic Schwarz map (note that this map governs the other Schwarz maps) of such an equation with any irregular singularity. We describe the asymptotic behavior of the map around the singular point: when the Poincaré rank is generic, it admits a uniform description; when the Poincaré rank is exceptional, a detailed study is made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Schwarz Maps of the Airy and the Confluent Hypergeometric Differential Equations and Their Asymptotic Behaviors

The Schwarz map of the hypergeometric differential equation is studied first by Schwarz, and later by several authors for various generalizations of the hypergeometric equation. But up to now nothing is studied about the Schwarz map for confluent equations, mainly because such a map would produce just a chaos. Recently we defined the hyperbolic Schwarz map, and studied in several cases, includi...

متن کامل

Asymptotics at irregular singular points

• Introduction 1. Example: rotationally symmetric eigenfunctions on R 2. Example: translation-equivariant eigenfunctions on H 3. Beginning of construction of solutions 4. K(x, t) is bounded 5. End of construction of solutions 6. Asymptotics of solutions 7. Appendix: asymptotic expansions • Bibliography According to [Erdélyi 1956], Thomé [1] found that differential equations with finite rank irr...

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

Compactness and Asymptotic Behavior of Entropy Solutions without Locally Bounded Variation for Hyperbolic Conservation Laws

We discuss some recent developments and ideas in studying the compactness and asymptotic behavior of entropy solutions without locally bounded variation for nonlinear hyperbolic systems of conservation laws. Several classes of nonlinear hyperbolic systems with resonant or linear degeneracy are analyzed. The relation of the asymptotic problems to other topics such as scale-invariance, compactnes...

متن کامل

Second-order linear differential equations with two irregular singular points of rank three: the characteristic exponent

Abstract For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009