Sources of intravascular ATP during exercise in humans: critical role for skeletal muscle perfusion.

نویسندگان

  • Brett S Kirby
  • Anne R Crecelius
  • Jennifer C Richards
  • Frank A Dinenno
چکیده

Exercise hyperaemia is regulated by several factors, and one factor known to increase with exercise that evokes a powerful vasomotor action is extracellular ATP. The origin of ATP detected in plasma from exercising muscle of humans is, however, a matter of debate, and ATP has been suggested to arise from sympathetic nerves, blood sources (e.g. erythrocytes), endothelial cells and skeletal myocytes, among others. Therefore, we tested the hypothesis that acute augmentation of sympathetic nervous system activity (SNA) results in elevated plasma ATP draining skeletal muscle, and that SNA superimposition during exercise increases ATP more than exercise alone. We showed that increased SNA via -40 mmHg lower body negative pressure (LBNP) at rest did not increase plasma ATP (51±8 nmol l(-1) at rest versus 58±7 nmol l(-1) with LBNP), nor did it increase [ATP] above levels observed during rhythmic hand-grip exercise (79±11 nmol l(-1) with exercise alone versus 71±8 nmol l(-1) with LBNP). Next, we tested the hypothesis that active perfusion of skeletal muscle is essential to observe increased plasma ATP during exercise. We showed that complete obstruction of blood flow to contracting muscle abolished exercise-mediated increases in plasma ATP (from 90±19 to 49±12 nmol l(-1)), and that cessation of blood flow prior to exercise completely inhibited the typical rise in ATP (3 versus 61%, obstructed versus intact perfusion). The lack of change in ATP during occlusion occurred in the face of continued muscular work and elevated SNA, indicating that the rise of intravascular ATP did not result from these extravascular sources. Our collective observations indicated that the elevation in extracellular ATP observed in blood during exercise was unlikely to originate from sympathetic nerves or the contacting muscle itself, but rather was dependent on intact skeletal muscle perfusion. We conclude that an intravascular source for ATP is essential, which indicates an important role for blood sources (e.g. red blood cells) in augmenting and maintaining elevated plasma ATP during exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical effects of muscle contraction increase intravascular ATP draining quiescent and active skeletal muscle in humans.

Intravascular adenosine triphosphate (ATP) evokes vasodilation and is implicated in the regulation of skeletal muscle blood flow during exercise. Mechanical stresses to erythrocytes and endothelial cells stimulate ATP release in vitro. How mechanical effects of muscle contractions contribute to increased plasma ATP during exercise is largely unexplored. We tested the hypothesis that simulated m...

متن کامل

Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation.

RATIONALE Skeletal muscle blood flow is coupled with the oxygenation state of hemoglobin in young adults, whereby the erythrocyte functions as an oxygen sensor and releases ATP during deoxygenation to evoke vasodilation. Whether this function is impaired in humans of advanced age is unknown. OBJECTIVE To test the hypothesis that older adults demonstrate impaired muscle blood flow and lower in...

متن کامل

The age-old tale of skeletal muscle vasodilation: new ideas regarding erythrocyte dysfunction and intravascular ATP in human physiology.

The Age-Old Tale of Skeletal Muscle Vasodilation: New Ideas Regarding Erythrocyte Dysfunction and Intravascular ATP in Human Physiology To the Editor: We are honored that Circulation Research highlighted our recent investigation1 with a companion Editorial article by Dr Chilian and colleagues.2 This undoubtedly will bring further attention to the significant and assorted cardiovascular dysfunct...

متن کامل

Skeletal muscle vasodilatation during maximal exercise in health and disease.

Maximal exercise vasodilatation results from the balance between vasoconstricting and vasodilating signals combined with the vascular reactivity to these signals. During maximal exercise with a small muscle mass the skeletal muscle vascular bed is fully vasodilated. During maximal whole body exercise, however, vasodilatation is restrained by the sympathetic system. This is necessary to avoid hy...

متن کامل

Skeletal muscle vasodilation during systemic hypoxia in humans.

In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental physiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2013