Image Denoising using Adaptive Hybrid Method- An Application with Additive, Multiplicative Noise
نویسندگان
چکیده
This research studied the effect of additive and multiplicative noise in images, and their solution. Salt n pepper, and Gaussian noise is considered as a additive noise, while impulsive noise is considered as a multiplicative noise. For additive noise, this paper presents the outcome of Wiener filter, and Pseudo inverse filter, while for impulsive noise, we studied wavelet denoising. A hybrid filter approach is also performed and outcomes are presented. The mean square error, and Peak signal to noise ratio is considered as a parameter for evaluation of filters. The software used for simulation is MATLAB 7.8.1.
منابع مشابه
An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملMultiplicative Noise Removal Using L1 Fidelity on Frame Coefficients
We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), apply a variational method on the log data or shrink their coefficients in a frame (e.g. a wav...
متن کاملMultiplicative Noise Cleaning via a Variational Method Involving Curvelet Coefficients
Classical ways to denoise images contaminated with multiplicative noise (e.g. speckle noise) are filtering, statistical (Bayesian) methods, variational methods and methods that convert the multiplicative noise into additive noise (using a logarithmic function) in order to apply a shrinkage estimation for the log-image data and transform back the result using an exponential function. We propose ...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کامل