A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy.

نویسندگان

  • Malte C Frese
  • Victor K Yu
  • Robert D Stewart
  • David J Carlson
چکیده

PURPOSE The physical and potential biological advantages of proton and carbon ions have not been fully exploited in radiation therapy for the treatment of cancer. In this work, an approach to predict proton and carbon ion relative biological effectiveness (RBE) in a representative spread-out Bragg peak (SOBP) is derived using the repair-misrepair-fixation (RMF) model. METHODS AND MATERIALS Formulas linking dose-averaged linear-quadratic parameters to DSB induction and processing are derived from the RMF model. The Monte Carlo Damage Simulation (MCDS) software is used to quantify the effects of radiation quality on the induction of DNA double-strand breaks (DSB). Trends in parameters α and β for clinically relevant proton and carbon ion kinetic energies are determined. RESULTS Proton and carbon ion RBE are shown to increase as particle energy, dose, and tissue α/β ratios decrease. Entrance RBE is ∼1.0 and ∼1.3 for protons and carbon ions, respectively. For doses in the range of 0.5 to 10 Gy, proton RBE ranges from 1.02 (proximal edge) to 1.4 (distal edge). Over the same dose range, the RBE for carbon ions ranges from 1.5 on the proximal edge to 6.7 on the distal edge. CONCLUSIONS The proposed approach is advantageous because the RBE for clinically relevant particle distributions is guided by well-established physical and biological (track structure) considerations. The use of an independently tested Monte Carlo model to predict the effects of radiation quality on DSB induction also minimizes the number of ad hoc biological parameters that must be determined to predict RBE. Large variations in predicted RBE across an SOBP may produce undesirable biological hot and cold spots. These results highlight the potential for the optimization of physical dose for a uniform biological effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The biological effects induced by high-charged and energy particles and its application in cancer therapy

The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...

متن کامل

Evaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line

In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...

متن کامل

Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...

متن کامل

An approximate analytical solution of the Bethe equation for charged particles in the range of radiotherapy energy

Charged particles such as protons and carbon ions are an increasing tool in radiation therapy. However, unresolved physical problems prevent optimal performance, including estimating the deposited dose in non-homogeneous tissue, is an essential aspect of optimizing treatment. The Monte Carlo (MC) method can be used to estimate the amount of radiation, but, this powerful computing operation is v...

متن کامل

Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro

BACKGROUND While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of radiation oncology, biology, physics

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2012