Espresso: Efficient Forward Propagation for BCNNs
نویسندگان
چکیده
There are many applications scenarios for which the computational performance and memory footprint of the prediction phase of Deep Neural Networks (DNNs) needs to be optimized. Binary Neural Networks (BDNNs) have been shown to be an effective way of achieving this objective. In this paper, we show how Convolutional Neural Networks (CNNs) can be implemented using binary representations. Espresso is a compact, yet powerful library written in C/CUDA that features all the functionalities required for the forward propagation of CNNs, in a binary file less than 400KB, without any external dependencies. Although it is mainly designed to take advantage of massive GPU parallelism, Espresso also provides an equivalent CPU implementation for CNNs. Espresso provides special convolutional and dense layers for BCNNs, leveraging bit-packing and bit-wise computations for efficient execution. These techniques provide a speed-up of matrix-multiplication routines, and at the same time, reduce memory usage when storing parameters and activations. We experimentally show that Espresso is significantly faster than existing implementations of optimized binary neural networks (≈ 2 orders of magnitude). Espresso is released under the Apache 2.0 license and is available at http://github.com/organization/project.
منابع مشابه
Espresso: Efficient Forward Propagation for Binary Deep Neural Networks
There are many applications scenarios for which the computational performance and memory footprint of the prediction phase of Deep Neural Networks (DNNs) need to be optimized. Binary Deep Neural Networks (BDNNs) have been shown to be an effective way of achieving this objective. In this paper, we show how Convolutional Neural Networks (CNNs) can be implemented using binary representations. Espr...
متن کاملESPResSo - an extensible simulation package for research on soft matter systems
We describe a new program package that is designed to perform numerical Molecular Dynamics (MD) and Monte Carlo (MC) simulations for a broad class of soft matter systems in a parallel computing environment. Our main concept in developing ESPResSo was to provide a user friendly and fast simulation tool which serves at the same time as a research platform capable of rapidly incorporating the late...
متن کاملContent Espresso: A Distributed Large File Sharing System for Digital Content Productions
With rapid growth of producing high-resolution digital contents such as Full HD, 4K, and 8K movies, the demand for low cost and high throughput sharing of content files is increasing at digital content productions. In order to meet this demand, we have proposed DRIP (Distributed chunks Retrieval and Integration Procedure), a storage and retrieval mechanism for large file sharing using forward e...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.07175 شماره
صفحات -
تاریخ انتشار 2017