Sentence-level Emotion Classification with Label and Context Dependence
نویسندگان
چکیده
Predicting emotion categories, such as anger, joy, and anxiety, expressed by a sentence is challenging due to its inherent multi-label classification difficulty and data sparseness. In this paper, we address above two challenges by incorporating the label dependence among the emotion labels and the context dependence among the contextual instances into a factor graph model. Specifically, we recast sentence-level emotion classification as a factor graph inferring problem in which the label and context dependence are modeled as various factor functions. Empirical evaluation demonstrates the great potential and effectiveness of our proposed approach to sentencelevel emotion classification. 1
منابع مشابه
WEMOTE - Word Embedding based Minority Oversampling Technique for Imbalanced Emotion and Sentiment Classification
Imbalanced training data always puzzles the supervised learning based emotion and sentiment classification. Several existing research showed that data sparseness and small disjuncts are the two major factors affecting the classification. Target to these two problems, this paper presents a word embedding based oversampling method. Firstly, a large-scale text corpus is used to train a continuous ...
متن کاملFine-Grained Emotion Detection in Suicide Notes: A Thresholding Approach to Multi-Label Classification
We present a system to automatically identify emotion-carrying sentences in suicide notes and to detect the specific fine-grained emotion conveyed. With this system, we competed in Track 2 of the 2011 Medical NLP Challenge,14 where the task was to distinguish between fifteen emotion labels, from guilt, sorrow, and hopelessness to hopefulness and happiness.Since a sentence can be annotated with ...
متن کاملCombining Lexico-semantic Features for Emotion Classification in Suicide Notes
This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Featur...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملLearning Semantic Concepts and Order for Image and Sentence Matching
Image and sentence matching has made great progress recently, but it remains challenging due to the large visualsemantic discrepancy. This mainly arises from that the representation of pixel-level image usually lacks of high-level semantic information as in its matched sentence. In this work, we propose a semantic-enhanced image and sentence matching model, which can improve the image represent...
متن کامل