Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

ثبت نشده
چکیده

Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From To)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator

In this paper, we describe a new class of fast solvers for separable elliptic partial differential equations in cylindrical coordinates (r, θ, z) with free-space radiation conditions. By combining integral equation methods in the radial variable r with Fourier methods in θ and z, we show that high-order accuracy can be achieved in both the governing potential and its derivatives. A weak singula...

متن کامل

A Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations

This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...

متن کامل

A Comprehensive Mathematical Model for Analysis of WR-Resolvers under Stator Short Circuit Fault

Wound-Rotor (WR) resolvers are the most widely used position sensors in applications with harsh environmental conditions. However, their performance is exposed to failure due to the high risk of short circuit (SC) fault. Although the output current of the resolver is negligible, its thin copper wires increase the probability of the short circuit fault. To avoid the propagation of the turn-to-tu...

متن کامل

Robust Integral Sliding-Mode Control of an Aerospace Launch Vehicle

An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015