The density of the ISE and local limit laws for embedded trees
نویسندگان
چکیده
It has been known for a few years that the occupation measure of several models of embedded trees converges, after a suitable normalization, to the random measure called ISE (Integrated SuperBrownian Excursion). Here, we prove a local version of this result: ISE has a (random) Hölder continuous density, and the vertical profile of embedded trees converges to this density, at least for some such trees. As a consequence, we derive a formula for the distribution of the density of ISE at a given point. This follows from earlier results by Bousquet-Mélou on convergence of the vertical profile at a fixed point. We also provide a recurrence relation defining the moments of the (random) moments of ISE.
منابع مشابه
Density Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملMean-field lattice trees
We introduce a mean-field model of lattice trees based on embeddings into Zd of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade, and provides an alternate approach to work of Aldous. The scaling limit of the mean-field model is integrated superBr...
متن کاملEmbedded Trees and the Support of the ISE
Embedded trees are labelled rooted trees, where the root has zero label and where the labels of adjacent vertices differ (at most) by [Formula: see text]. Recently it has been proved (see Chassaing and Schaeffer (2004) [8] and Janson and Marckert (2005) [11]) that the distribution of the maximum and minimum labels are closely related to the support of the density of the integrated superbrownian...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملGeneral Limit Theorem for Recursive Algorithms and Combinatorial Structures
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer theorem is derived which allows us to establish a limit law on the basis of the recursive structu...
متن کامل