Impacts of a-priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals
نویسندگان
چکیده
Physically based rainfall retrievals from passive microwave sensors often make use of cloud-resolving models (CRMs) to build a priori databases of potential rain structures. EachCRM, however, has its own cloud microphysics assumptions. Hence, approximated microphysics may cause uncertainties in the a priori information resulting in inaccurate rainfall estimates. This study first builds a priori databases by combining the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations and simulations from the Weather Research and Forecasting (WRF) model with six different cloud microphysics schemes. The microphysics schemes include the Purdue–Lin (LIN), WRF Single-Moment 6 (WSM6), Goddard Cumulus Ensemble (GCE), Thompson (THOM), WRF Double-Moment 6 (WDM6), and Morrison (MORR) schemes. As expected, the characteristics of the a priori databases are inherited from the individual cloud microphysics schemes. There are several distinct differences in the databases. Particularly, excessive graupel and snow exist with the LIN and THOM schemes, while more rainwater is incorporated into the a priori information with WDM6 than with any of the other schemes. Major results show that convective rainfall regions are not well captured by the LIN and THOM schemes-based retrievals. Rainfall distributions and their quantities retrieved from the WSM6 and WDM6 schemes-based estimations, however, show relatively better agreement with the PR observations. Based on the comparisons of the various microphysics schemes in the retrievals, it appears that differences in the a priori databases considerably affect the properties of rainfall estimations.
منابع مشابه
Impact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part I: Model Comparison Using EOF Analyses
The impact of model microphysics on the relationships among hydrometeor profiles, latent heating, and derived satellite microwave brightness temperatures TB have been examined using a nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over water. Two microphysical schemes (each employing three-ice bulk parameterizations) were tested for two different assumptions...
متن کاملImpact of Cloud Model Microphysics on Passive Microwave Retrievals of Cloud Properties. Part II: Uncertainty in Rain, Hydrometeor Structure, and Latent Heating Retrievals
The impact of model microphysics on the retrieval of cloud properties based on passive microwave observations was examined using a three-dimensional, nonhydrostatic, adaptive-grid cloud model to simulate a mesoscale convective system over ocean. Two microphysical schemes, based on similar bulk two-class liquid and three-class ice parameterizations, were used to simulate storms with differing am...
متن کاملP2B.10 Comparison and validation of WRF-ARW cloud microphysics schemes during C3VP/CLEX-10 field experiment
Better understanding of the vertical structures of clouds in the atmosphere is essential for more accurate radar, lidar, satellite retrievals, climate/weather numerical modeling, and even aviation safety issues regarding icing conditions (Fleishauer et al., 2002). However, an accurate estimate of liquid and ice phase hydrometeors in the clouds is still very challenging, and our limited knowledg...
متن کاملThe impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall
In recent years, a mixed-physics ensemble approach has been investigated as a method to better predict mesoscale convective system (MCS) rainfall. For both mixed-physics ensemble design and interpretation, knowledge of the general impact of various physical schemes and their interactions on warm season MCS rainfall forecasts would be useful. Adopting the newly emerging Weather Research and Fore...
متن کاملParametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers
A methodology is described to construct fully parametric rainfall retrieval algorithms for a variety of passive microwave sensors that exist today and are planned for the future. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is used to retrieve nonraining geophysical parameters. The method then blends these background geophysical parameters with three-dimensional precipi...
متن کامل