Rhodium bis(quinolinyl)benzene complexes for methane activation and functionalization.
نویسندگان
چکیده
A series of rhodium(III) bis(quinolinyl)benzene (bisq(x)) complexes was studied as candidates for the homogeneous partial oxidation of methane. Density functional theory (DFT) (M06 with Poisson continuum solvation) was used to investigate a variety of (bisq(x)) ligand candidates involving different functional groups to determine the impact on Rh(III)(bisq(x))-catalyzed methane functionalization. The free energy activation barriers for methane C-H activation and Rh-methyl functionalization at 298 K and 498 K were determined. DFT studies predict that the best candidate for catalytic methane functionalization is Rh(III) coordinated to unsubstituted bis(quinolinyl)benzene (bisq). Support is also found for the prediction that the η(2)-benzene coordination mode of (bisq(x)) ligands on Rh encourages methyl group functionalization by serving as an effective leaving group for SN2 and SR2 attack.
منابع مشابه
Rhodium complexes bearing tetradentate diamine-bis(phenolate) ligands.
Using tetradentate, dianionic ligands, several new rhodium complexes have been prepared. Some of these diamine-bis(phenolate) compounds, are active for C-H activation of benzene. These complexes are air and thermally stable. All four complexes were characterized by X-ray diffraction.
متن کاملHigh throughput screening arrays of rhodium and iridium complexes as catalysts for intramolecular hydroamination using parallel factor analysis.
Parallel factor analysis (PARAFAC) was used to analyze data from the high throughput screening of an array of organometallic rhodium and iridium complexes as catalysts for the intramolecular hydroamination of 2-(2-phenylethynyl)aniline to give 2-phenylindole. The progress of the hydroamination reactions was monitored using UV-visible spectroscopy. The overlapped UV-visible spectra of the mixtur...
متن کاملCatalytic oxidation of benzene by mononuclear copper(II) complexes with a bis(imidazolyl)methane ligand
Catalytic oxidation of benzene under mild conditions is one of the most challenging reactions in synthetic chemistry. In order to develop a hydroxylation catalyst for benzene, we have designed and synthesized new copper(II) complexes with the bidentate ligand bis(1,4,5-trimethyl-2-imidazolyl)methane (Me6bim), [Cu(Me6bim)X2] (X = Cl, Br). This ligand provides a reaction space which can be easily...
متن کاملChances and Limits of the Coordination Chemistry with Bis(benzene-l,2-dithiolato) Ligands
The incorporation of benzene-l,2-dithiolato building blocks into supramolecular coordination assemblies is the main objective of the investigations described here. Special interest is directed towards dinuclear complexes with bis(benzene-l,2-dithiolato) ligands, which might be able to form helical structures. Bis(benzene-l,2-dithiolato) ligands are accessible by ortho-functionalization and subs...
متن کاملRhodium-catalyzed acylation with quinolinyl ketones: carbon-carbon single bond activation as the turnover-limiting step of catalysis.
The rhodium-catalyzed intramolecular carboacylation of quinolinyl ketones serves as an ideal subject for the mechanistic study of carbon-carbon bond activation. Combined kinetic and NMR studies of this reaction allowed the identification of the catalytic resting state and determination of the rate law, (12)C/(13)C kinetic isotope effects, and activation parameters. These results have identified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2015