Monocyte-Induced Prostate Cancer Cell Invasion is Mediated by Chemokine ligand 2 and Nuclear Factor-κB Activity
نویسندگان
چکیده
STUDY BACKGROUND The tumor microenvironment contains inflammatory cells which can influence cancer growth and progression; however the mediators of these effects vary with different cancer types. The mechanisms by which prostate cancer cells communicate with monocytes to promote cancer progression are incompletely understood. This study tested prostate cancer cell and monocyte interactions that lead to increased prostate cancer cell invasion. METHODS We analyzed the prostate cancer cell invasion and NF-κB activity and cytokine expression during interaction with monocyte-lineage cells in co-cultures. The roles of monocyte chemotactic factor (MCP-1/CCL2) and NF-κB activity for co-culture induced prostate cancer invasion were tested. Clinical prostate cancer NF-κB expression was analyzed by immunohistochemistry. RESULTS In co-cultures of prostate cancer cell lines with monocyte-lineage cells, (C-C motif) ligand 2 (CCL2) levels were significantly increased when compared with monocytes or cancer cells cultured alone. Prostate cancer cell invasion was induced by recombinant CCL2 in a dose dependent manner, similar to co-cultures with monocytes. The monocyte-induced prostate cancer cell invasion was inhibited by CCL2 neutralizing antibodies and by the CCR2 inhibitor, RS102895. Prostate cancer cell invasion and CCL2 expression induced in the co-cultures was inhibited by Lactacystin and Bay11-7082 NF-κB inhibitors. Prostate cancer cell NF-κB DNA binding activity depended on CCL2 dose and was inhibited by CCL2 neutralizing antibodies. Clinical prostate cancer NF-κB expression correlated with tumor grade. CONCLUSIONS Co-cultures with monocyte-lineage cell lines stimulated increased prostate cancer cell invasion through increased CCL2 expression and increased prostate cancer cell NF-κB activity. CCL2 and NF-κB may be useful therapeutic targets to interfere with inflammation-induced prostate cancer invasion.
منابع مشابه
Hypoxia increases CX3CR1 expression via HIF-1 and NF‑κB in androgen-independent prostate cancer cells.
The unique CX3C chemokine CX3CL1 and its cognate receptor CX3CR1 have been implicated in organ-specific metastasis of various types of tumors. Hypoxia, a common phenomenon in solid tumors, is associated with a malignant cancer phenotype. Previous studies have proved that hypoxia facilitates cancer cell metastasis through upregulation of specific c...
متن کاملMangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymo...
متن کاملTumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells
Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting che...
متن کاملRetraction: Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Prostate Cancer Cell Migration and Invasion Induced by Tumor-Associated Macrophages
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the major n-3 polyunsaturated fatty acids (PUFAs) in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs) are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression ...
متن کاملInvolvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α
Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL1...
متن کامل