Glia delimit shape changes of sensory neuron receptive endings in C. elegans.
نویسندگان
چکیده
Neuronal receptive endings, such as dendritic spines and sensory protrusions, are structurally remodeled by experience. How receptive endings acquire their remodeled shapes is not well understood. In response to environmental stressors, the nematode Caenorhabditis elegans enters a diapause state, termed dauer, which is accompanied by remodeling of sensory neuron receptive endings. Here, we demonstrate that sensory receptive endings of the AWC neurons in dauers remodel in the confines of a compartment defined by the amphid sheath (AMsh) glial cell that envelops these endings. AMsh glia remodel concomitantly with and independently of AWC receptive endings to delimit AWC receptive ending growth. Remodeling of AMsh glia requires the OTD/OTX transcription factor TTX-1, the fusogen AFF-1 and probably the vascular endothelial growth factor (VEGFR)-related protein VER-1, all acting within the glial cell. ver-1 expression requires direct binding of TTX-1 to ver-1 regulatory sequences, and is induced in dauers and at high temperatures. Our results demonstrate that stimulus-induced changes in glial compartment size provide spatial constraints on neuronal receptive ending growth.
منابع مشابه
PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans.
Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuro...
متن کاملA Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC
Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neuron...
متن کاملGlia Get Neurons in Shape
Glial cells are essential components of the nervous system. In this issue, Singhvi et al. uncover cellular and molecular mechanisms through which C. elegans glia shape sensory neuron terminals and thus control animal thermosensing behaviors.
متن کاملOpposing Activities of LIT-1/NLK and DAF-6/Patched-Related Direct Sensory Compartment Morphogenesis in C. elegans
Glial cells surround neuronal endings to create enclosed compartments required for neuronal function. This architecture is seen at excitatory synapses and at sensory neuron receptive endings. Despite the prevalence and importance of these compartments, how they form is not known. We used the main sensory organ of C. elegans, the amphid, to investigate this issue. daf-6/Patched-related is a glia...
متن کاملC. elegans daf-6 encodes a patched-related protein required for lumen formation.
Sensory organs are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. Here we show that lumen formation in the C. elegans amphid sensory organ requires the gene daf-6. daf-6 encodes a Patched-related protein that localizes to the luminal surfaces of the amphid channel and other C. elegans tubes. While daf-6 mutants display only amphid lum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 138 7 شماره
صفحات -
تاریخ انتشار 2011