When Does the Set of $(a, b, c)$-Core Partitions Have a Unique Maximal Element?

نویسنده

  • Amol Aggarwal
چکیده

In 2007, Olsson and Stanton gave an explicit form for the largest (a, b)-core partition, for any relatively prime positive integers a and b, and asked whether there exists an (a, b)-core that contains all other (a, b)-cores as subpartitions; this question was answered in the affirmative first by Vandehey and later by Fayers independently. In this paper we investigate a generalization of this question, which was originally posed by Fayers: for what triples of positive integers (a, b, c) does there exist an (a, b, c)-core that contains all other (a, b, c)-cores as subpartitions? We completely answer this question when a, b, and c are pairwise relatively prime; we then use this to generalize the result of Olsson and Stanton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON COMMUTATIVE GELFAND RINGS

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

متن کامل

When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?

 The rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$  is an undirected simple graph whose vertex set is $mathbb{A}(R...

متن کامل

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

When Does the Set of ( a , b , c ) - Core Partitions Have a

In 2007, Olsson and Stanton gave an explicit form for the largest (a, b)-core partition, for any relatively prime positive integers a and b, and asked whether there exists an (a, b)-core that contains all other (a, b)-cores as subpartitions; this question was answered in the affirmative first by Vandehey and later by Fayers independently. In this paper we investigate a generalization of this qu...

متن کامل

Stirling number of the fourth kind and lucky partitions of a finite set

The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015