Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain

نویسندگان

  • Thomas T. Bringley
  • Charles S. Peskin
چکیده

We test the efficacy of using a single Lagrangian point to represent a sphere, and a one-dimensional array of such points to represent a slender body, in a new immersed boundary method for Stokes flow. A numerical parameter, the spacing of the Eulerian grid, is used to determine the effective radius of the immersed sphere or slender body. Such representations are much less expensive computationally than those with two or three-dimensional meshes of Lagrangian points. To perform this test, we develop a numerical method to solve the discretized Stokes equations on an unbounded Eulerian grid which contains an arbitrary configuration of Lagrangian points that apply force to the fluid and that move with the fluid. We compare results computed with this new immersed boundary method to known results for spheres and rigid cylinders in Stokes flow in R. We find that, for certain choices of parameters, the interactions with the fluid of a single Lagrangian point accurately replicate those of a sphere of some particular radius, independent of the location of the point with respect to the Eulerian grid. The interactions of a linear array of Lagrangian points, for certain choices of parameters, accurately replicate those of a cylinder of some particular radius, independent of the position and orientation of the array with respect to the Eulerian grid. The effective radius of the sphere and the effective radius of the cylinder turn out to be related in a simple and natural way. Our results suggest recipes for choosing parameters that should be useful to practitioners. One surprising result is that one must not use too many Lagrangian points in an array. Another is that the approximate delta functions traditionally used in the immersed boundary method perform much better than higher order delta functions with the same support. 2008 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lattice Boltzmann-Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects

A numerical approach based on the Lattice Boltzmann and Immersed Boundary methods is proposed to tackle the problem of the interaction of moving and/or deformable slender solids with an incompressible fluid flow. The method makes use of a Cartesian uniform lattice that encompasses both the fluid and the solid domains. The deforming/moving elements are tracked through a series of Lagrangian mark...

متن کامل

Modeling slender bodies with the method of regularized Stokeslets

The motion and flow generated by immersed structures in a fluid in the Stokes regime can be modeled with a variety of different numerical methods. The mathematical structure of the Stokes equations allows one to describe the flow around a three-dimensional object using only information regarding its geometry. This leads to computational techniques such as boundary integral methods or the method...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

Numerical Simulation of Partial Cavitation over Axisymmetric Bodies: VOF Method vs. Potential Flow Theory

A computational study of partial cavitation over axisymmetric bodies is presented using two numerical methods. The first method is based on the VOF technique where transient 2D Navier-Stokes equations are solved along with an equation to track the cavity interface. Next, the steady boundary element method (BEM) based on potential flow theory is presented. The results of the two methods for a di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008