Ba5Cu8In2S12: a quaternary semiconductor with a unique 3D copper-rich framework and ultralow thermal conductivity.
نویسندگان
چکیده
A novel quaternary sulfide, Ba5Cu8In2S12 (1), has been successfully synthesized via a high-temperature solid-state reaction. It contains Cu8S10S4/2 clusters as basic building blocks, which are connected to one another by discrete In3+ ions to generate a 3D copper-rich framework, where the Ba2+ cations reside. Interestingly, such large clusters that are fused by five crystallographically independent Cu sites with three different chemical environments result in the increase of phonon scattering, which is the crucial factor to the exceptionally low lattice thermal conductivity (ca. 0.28 W m-1 K-1 at 773 K) in 1.
منابع مشابه
Ultralow thermal conductivity in all-inorganic halide perovskites.
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m-1·K-1), CsPbBr3 (0.42 ± 0.04 W·m-1·K-1), and CsSnI3 (0.38 ...
متن کاملThermal Conductivity of Diamond Composites
A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m...
متن کاملTopological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity
By means of first-principles and ab initio tight-binding calculations, we found that the compound of NaBi is a three-dimensional non-trivial topological metal. Its topological feature can be confirmed by the presence of band inversion, the derived effective Z2 invariant and the non-trivial surface states with the presence of Dirac cones. Interestingly, our calculations further demonstrated that...
متن کاملUltralow thermal conductivity of isotope-doped silicon nanowires.
The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with 50% isotope atoms. The thermal conductivity of isotopic-super...
متن کاملThermoelectric Properties of Gadolinium Copper Tellurides
Since thermoelectrics are an important way to produce electricity from waste heat, the thermoelectric properties of gadolinium copper telluride, GdCuTe2, together with the doped compounds gadolinium samarium copper telluride, Gd1-xSmxCuTe2, and gadolinium dysprosium copper telluride, Gd1-xDyxCuTe2, with x = 0.02 and x = 0.05 were investigated. Upon doping, a decrease in thermal conductivity and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 53 17 شماره
صفحات -
تاریخ انتشار 2017